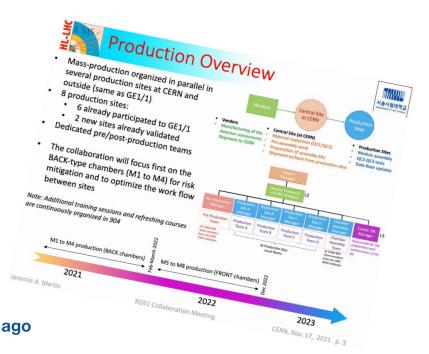


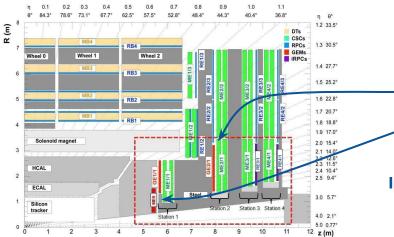
Production of CMS GEM detectors for the GE2/1 and ME0 stations

With lessons learnt from GE1/1


Antonello Pellecchia¹ for the CMS GEM group ¹ INFN Bari

RD51 collaboration meeting - Dec 4-8 2023

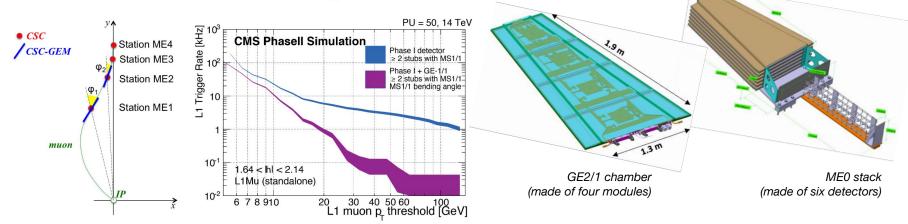
Last update on CMS production...


... more than 2 years ago

Meanwhile:

- Production has continued
- First validation results are available
- Priorities have shifted
- New lessons learnt, still more to understand

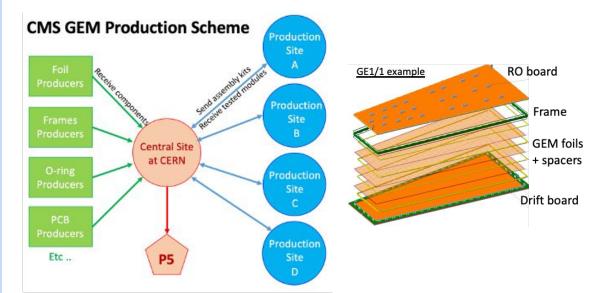
Jeremie A. Merlin


CINFN CMS GEM project

- GE1/1: Complementing CSC system in 1.6 < |η| < 2.15
 Early Phase-2 upgrade: already installed in 2019-2020, commissioned and taking data during Run 3
 - **GE2/1:** Complementing CSC system in $1.6 < |\eta| < 2.4$
- **ME0:** Complementing other GEMs and CSCs in 1.6 < $|\eta|$ < 2.4,

extending muon system coverage to $2.4 < |\eta| < 2.8$

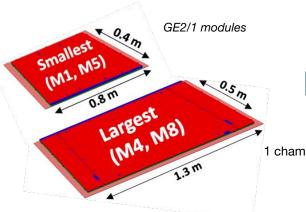
In this presentation: GE2/1 production status and outlook on ME0

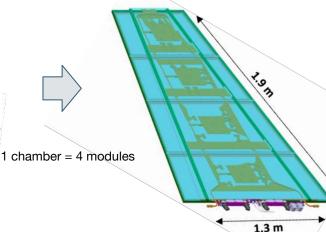


5th 2023

Dec

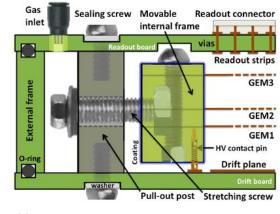
INFN Production overview




Production scheme as for GE1/1:

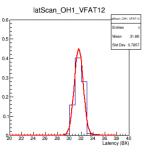
- Component QC at CERN
- Five production sites (Bari, CERN, Ghent+Aachen, Frascati, PKU) for individual modules
- Electronics, chamber assembly (4 modules together) and final validation with cosmics at CERN

What do the detectors look like? And how have they changed?


GE2/1 detector design

- 2 GE2/1 endcaps
- 18 "super-chambers" per endcap
- 2 chambers per "super-chamber"
 "Front" and "back" type
- 4 modules per chamber

Front modules (M5, M6, M7, M8) Back modules (M1, M2, M3, M4)


Detector and electronics design **inherited from GE1/1**, but with **lessons learnt**:

- Noise
- Protection for readout electronics
- Planarity and response uniformity
- Intrinsic time resolution

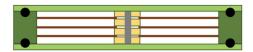
RO strips

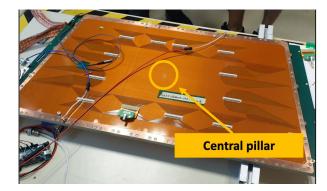
VFAT3

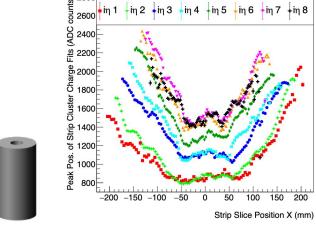
G

Lesson: detector planarity

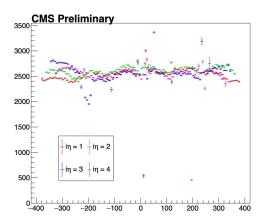
Problem: in GE1/1, drift and R/O PCBs tended to bend under stretching force


 \rightarrow **dishomogeneity** of gain, efficiency and timing


1st GE2/1 solution: pillars (sensitive to deformation on drift)

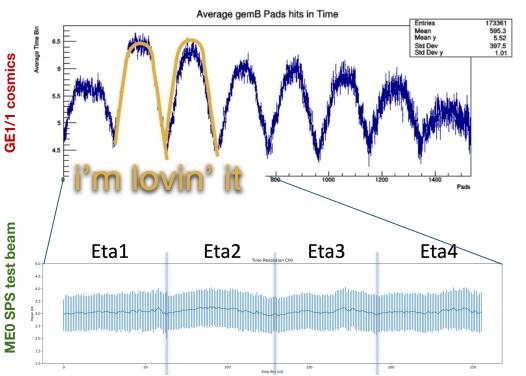

<u> </u>	

2nd GE2/1 solution: rings



- Much improved gain uniformity and efficiency uniformity
- Reduced risk of sparks by weak spots in induction gap

Top: GE1/1 "long" detector Bottom: GE2/1 M4 module


100 150

J. Merlin, GE2/1 production, in November 2021 RD51 collaboration meeting

Lesson: time resolution and planarity

The **PCB bending** was impacting the **time response uniformity** of the detector.

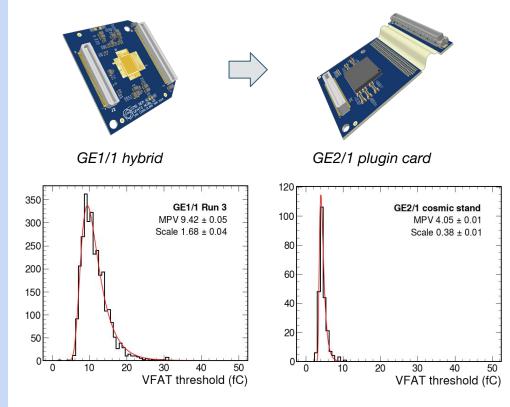
In GE1/1, this caused **non-uniformity in signal** rise time \rightarrow timing modulation with strip position ("basin effect")

 Fixable in GE1/1 by applying different delays to trigger primitives in GEM front-end FPGA

Fixed in GE2/1 and ME0 design by using pillars to ensure uniformity of induction gap:

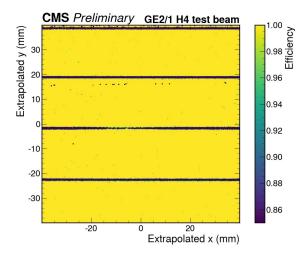
 SPS test beam results: good timing uniformity over 4 eta partitions

Not a problem in ME0 (Should also be ok in GE2/1)


Surprise: time resolution and electronics

Our time resolution with front-end electronics is 15 - 19 ns, not 8 - 10 ns

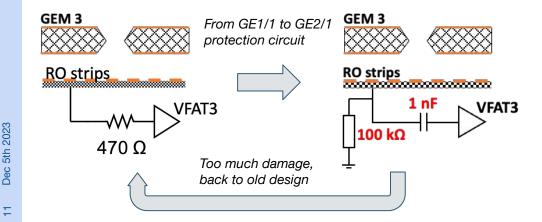
- Common issue between GE1/1, GE2/1 and ME0: analog front-end not optimized for GEM signal shape and duration
- We cannot improve the time resolution*, but we can mitigate effect on online physics performance:
 - Reading out multiple BXs readout in back-end firmware Implemented in emulator, under development in GEM firmware
 - From first simulations, online segment efficiency recovered with matching window 3 BX Slight worsening in bending angle resolution only at "hypothetical" pile-up 300

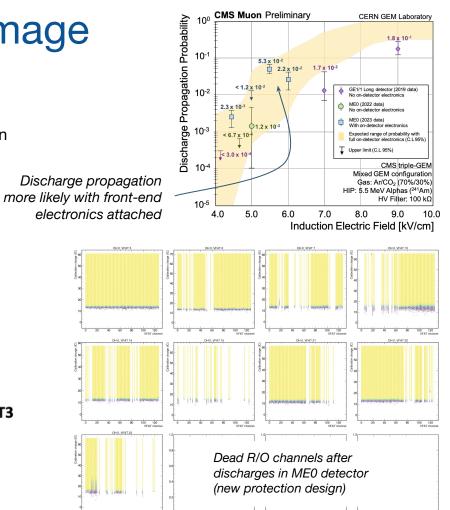

INFN Lesson: noise

Very **good S/N ratio** verified with high-granularity efficiency measurement in test beam \rightarrow

Same front-end ASIC (VFAT3), new PCB

- Chip is now **packaged**, bump-bonded (higher yield compared to hybrids)
- Flex PCB for easier alignment between readout board (ROB) and GEM electronics board (GEB)
- **HRS 140** connector to R/O strips provides more grounding pins $\rightarrow \sim x^2$ lower noise


2


Lesson: readout damage

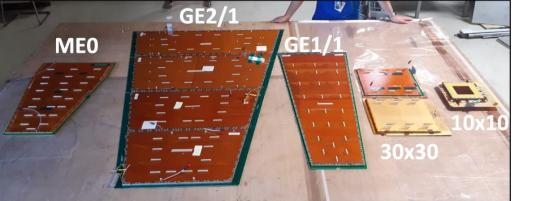
GE2/1 plugin card included new "decoupling" circuit to prevent discharge propagation to front-end

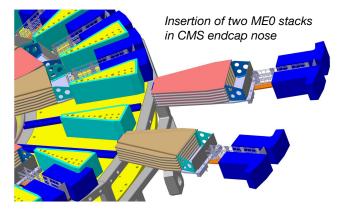
- Operations with GE2/1 and ME0 detectors (demonstrator in CMS, test beam, lab measurements) showed too high probability of discharge damage
- We changed the protection circuit back to the GE1/1 design (470 Ω series resistor)

Discharge studies now show no damage (expected damage probability per chip $< 3 \times 10^{-3}$)

How is the production going?

GEM production schedule




Production schedule **approved by CMS** in GE2/1 manufacturing progress review (MPR), May 2023:

- Install 30 chambers out of 36 (almost one endcap) in year-end technical stop (YETS) 2023-2024
- **Complete** production by **October 2024** (no float)
- Start **ME0** production in **November 2024**
- Complete full GE2/1 system installation in YETS 24-25

In short: complete mass production of GE2/1 before ME0

Note: ME0 installation is constrained to January 2027 by HGCAL schedule

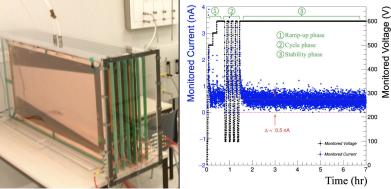
З

GEM foil production

Original plan: two GE2/1 foil producers

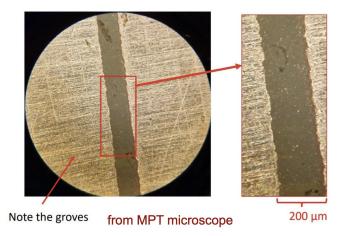
- MPT workshop (CERN): M1, M4, M5, M8
- KCMS/Mecaro (Korea): M2, M3, M6, M7

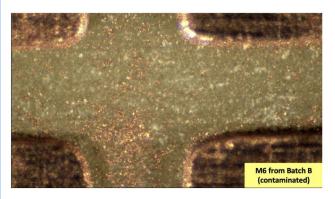
Mecaro produced **300 foils with 99% yield** Each foil delivered with in-depth QC results


- \rightarrow In 2022, Mecaro **sold** its chemical lab away
- → Production **stopped** in August 2022
- → Equipment and expertise to be relocated to KCMS
- → GE2/1 foil production not continuing at KCMS: will start again for ME0 foils

New plan: remaining foil production to complete at MPT workshop

- Restarted in July 2023
- Expected end in April 2024


ION	Mecaro Foil N
	Foil Information
	Official Foil N
6	1) Optical/Visu
	Ro
	Drit
	2) SMD Regist
	3) HV Line
	4) Defects
	One defect with
A Mailen many and a second	
	0 0
	0 •
	5) Hole Diame
	- Realted Image
	- Drift Side
과학기술정보통신부 NRF 한국인구재단	Foil Section
	002A_CLMean 002A_CLStdev
💶 🥃 🖲 🙆 🖻 🕤 🕙 🕲 🗑 😇 🖸	002A_COStORV 002A_PIMean
	002A_PIStdev
CMS GEM GE21 Foils	- RO Side
	Foil Section
1st Delivery Celebration	002A_CUMean
	002A_CUStdev
	002A_PIMean
	997A PIStdev


	Number	N	42K-21041	I-2A					
Foil Inform	ation		M# 2	RESISTOR	BATCH # 002	FOIL # 02			
Official Foil	Name	G	iE21-FOIL-M	2-G12-KR-B02-0	1002				
1) Optical/V	isual Insp	ection							
	Ro Side Sur	face Condition	- Stain	21 defects, dif	ferent curren	t at 600V - a	t 100V = 0.4	1	
	Drift Side S	urface Conditio	n - Stain						
2) SMD Reg	ister								
		Ro Side SMD	Resistor			MD Resistor			
3) HV Line		Passed			Passed				
5) HV Line		Ro Side HV L	ine		Drift Side H	VLine			
		Closed Circuit			Closed Circu				
4) Defects									
One defect wi	th hole loca	Ared	0						
One defect with the other of the other of the other ot	neter Insp								
5) Hole Dian - Realted Imag	neter Insp	ection				NO-BD_r3AEa			
- Drift Side Fail J Section	neter Insp ×	rection 1 Rep: drive.goog	de.com/drive/ 3 80.99	4 79.33	5 78.35	Total Avg. 74.88			
5) Hole Dian - Aralied Image - Drift Side Fail Section 802A, Clifferan 802A, Clifferan	1 77.8 1.02	ection 178-95 0.68	3 80.99 0.54	4 79.33 0.82	5 78.35 0.62	Total Avg.			
- Drift Side Fail J Section	neter Insp ×	rection 1 Rep: drive.goog	de.com/drive/ 3 80.99	4 79.33	5 78.35	Total Avg. 74.88 1.76			
5) Hole Diat - Realted Imag - Drift Side Full Section 807A_CLIStelv 807A_CLIStelv	1 77.8 1.02 54.37	2 78.95 0.48 2 78.95 0.48	3 80.99 0.54 59.37	4 79.33 0.82 54.94	5 78.35 0.62 56	Total Avg. 74.88 1.76 52.88			
5) Hole Diata - Realted Imag - Drift Side Feil Section 802A_CUStdean 802A_CUStdean 802A_DPIStdear 802A_DPIStdear	1 77.8 1.02 1.18	2 78-55 78-55 98-55 2 78-55 2 78-55 2 78-55 2 78-55	3 80.99 0.54 59.37 0.69	4 79.33 0.82 54.94 1.01	\$ 78.35 0.62 56 0.75 \$	Total Avg. 74.83 1.76 52.88 1.7			
5) Hole Diad - Drift Side Feil Inccion 8023.Cl/Ban 80	1 77.8 1.02 54.37 1.18	2 78.95 0.85 0.85 2 77.94	3 80.99 0.54 59.37 0.69 3 75.71	4 79.33 0.82 54.94 1.01 4 71.01	\$ 78.35 0.62 56 0.75 \$ 76.18	Total Avg. 74.83 1.76 52.88 1.7 Total Avg. 75.05			
S) Hole Diat Control Control Contro Control Control Control Control Control C	1 77.8 1.02 1.18	2 78-55 78-55 98-55 2 78-55 2 78-55 2 78-55 2 78-55	3 80.99 0.54 59.37 0.69	4 79.33 0.82 54.94 1.01	\$ 78.35 0.62 56 0.75 \$	Total Avg. 74.83 1.76 52.88 1.7			
5) Hole Diad - Drift Side Feil Inccion 8023.Cl/Ban 80	1 77.8 10.2 1.18 1 1.18	2 7835 9.85 9.85 2 7835 9.85 9.85	3 80.99 0.54 59.37 0.69 3 75.71 0.89	4 79.33 0.82 54.94 1.01 4 71.01 1.02	5 78.35 0.62 56 0.75 5 76.18 1.19	Total Avg. 74.88 1.76 52.88 1.7 Total Avg. 75.05 2.41			

EXAMPLE PCB production issue

- At end of summer 2023, **98 modules** assembled (24 chambers) 36 needed for 1 endcap
- In summer, assembly team had **issues with 80%** of production modules
 - Many cleaning iterations needed during assembly
 - Shorts forming while closing detectors
- Could not see issues in drift and R/O PCBs with microscope in QC lab
- However, MPT workshop lab showed copper dust (few µm) in PCBs Cannot be removed by mechanical cleaning

Investigation on PCB quality (September 2023):

 Dust came from sanding done by PCB manufacturer (Micropack) on last PCB batch

Issue only for GE2/1

• Copper **passivation was not applied** in all PCBs: No protection against copper **oxidation**

Affects both GE1/1 and GE2/1; impact on performance yet unknown

• We decided to refurbish all GE2/1 modules and redefine PCB validation

5th 2023

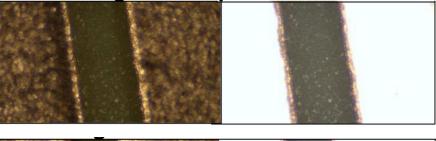
Dec

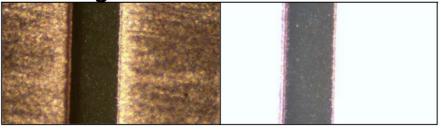
INFN PCB refurbishment

Refurbishment procedure established with the help of the **MPT Workshop**:

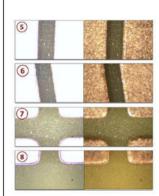
- Mechanical cleaning with tissue soaked with pure ethanol or isopropyl **alcohol**
- Water jet cleaning
- Micro-etching
- Chromic-acid passivation

Procedure also **applied successfully** by Micropack. No visible difference now between MPT and Micropack refurbished PCBs


A validation procedure is now required for all new PCBs:


- Visual inspection
- Microscope inspection (new)

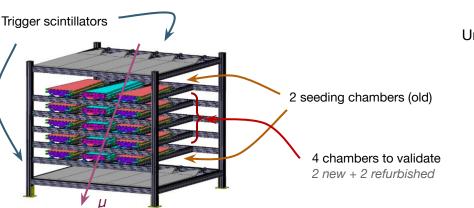
Inspection on several points on the PCBs with different light intensity

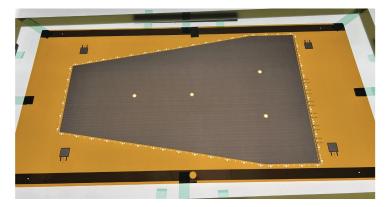

• Strip continuity/shorts (updated)

Still investigating on how to fix contaminated GEM foils

G

INFN New production plan


GE2/1 refurbishment plan:


- Opening all 98 modules
- PCB refurbishment at CERN MPT workshop
- Re-assembly and QC

Estimated time to complete production: 2.6 to 3.1 years

Priority shifts to ME0:

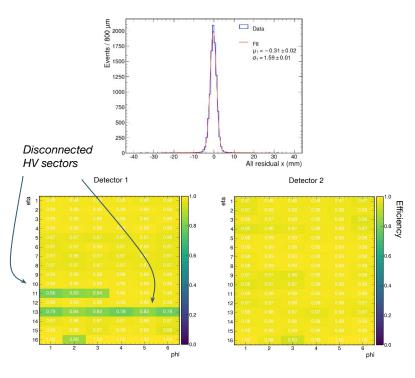
- Stopping GE2/1 foil production at CERN and start with ME0 (2024)
- KCMS has started the ME0 foil production already
- Beginning of ME0 detector production in March 2024

First production ME0 foil at KCMS

Until ME0 components arrive, GE2/1 production continues:

• Assembled **4 GE2/1 chambers**

2 with new modules, 2 refurbished


- Tested at CERN in "cosmic stand" Telescope using final electronics and services
- We will **install the two best** chambers in CMS this year 1 new + 1 refurbished

Outlook on GE2/1 chamber validation

We did a **test round** of chamber validation with cosmics for **non-refurbished** chambers: **still a few surprises** to be understood

CMS Preliminary Cluster charge (ADC) Sitting idle 3000 1 year 2000 1500 $\pm i\eta = 1 \pm i\eta = 2$ 1000 $\pm i\eta = 3 \pm i\eta = 4$ 500 24 Oct 2023 -400 -300 -200 -100 0 100 200 300 Average efficiency 0.868 CMS Preliminary After opening 400 400 200 Cluster charge (ADC) Propagated x (mm) Measurement on 23 Nov 2023 1000 in = 1 + in = 2Gain dips found in 4 modules 1 year after production (but seems to disappear after opening the detector and flushing)

Instead the **refurbished and new** chambers show good stability and efficiency **uniformity**

Fist chambers almost ready for installation

-300 -200 -100

100 200

300

0

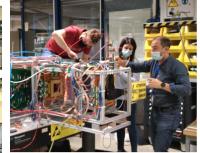
In conclusion

Long way since beginning of Phase-2 GEM production:

• **GE1/1 lessons** applied to GE2/1 production:

noise, cross-talk, readout protection, efficiency uniformity

Or learning to live with: timing...


- Initially produced almost 1 GE2/1 endcap
- PCB quality issue: rescheduling project to prioritize ME0
- Defined a GE2/1 refurbishment procedure and first chambers will be installed this year

Still training the next generation of experts...

19

