

Production of Encapsulated Resistive Anode Micromegas (ERAM) for the T2K High-Angle TPCs

Alain Delbart, CEA/IRFU - Univ. Paris-Saclay, for the ND280/HA-TPC group

Vertical TPC (2004-) for ND280

High-Angle TPC (2018-) for ND280 upgrade

ND280 @ JPARC

(Japan)

RD51 collaboration meeting, 4-8 december 2023

THE T2K EXPERIMENT: TOKAI TO KAMIOKA FROM T2K TO T2K-II AND T2-HK

cea

irtu

clbart@cea.fr, ERAM for the T2K/HA-TPCs RD51 collaboration meeting, 4-8 december 2023

2/25

THE DEVELOPMENT OF THE UPGRADED NEAR DETECTOR OF T2K THE HA-TPC (2018-2024)

... with 2 new TPCs with better final state muons acceptance from new SFGD target and from downstream events

2009 TPCs (x3) + T2K Gas system by CERN (mixing, filtering, gas properties monitoring)

irtu

cea

Warsaw University

	HA-TPC	v-TPC
Parameter	Value	
$Overall x \times y \times z (m)$	$2.0\times0.8\times1.8$	0.85 x 2.2 x 1.8
Drift distance (cm)	90	
Magnetic Field (T)	0.2	
Electric field (V/cm)	275	
Gas Ar- CF_4 - iC_4H_{10} (%)	95 - 3 - 2	
Drift Velocity $cm/\mu s$	7.8	
Transverse diffusion $(\mu m / \sqrt{cm})$	265	
Micromegas gain	1000	
Micromegas dim. z×y (mm)	340x420	340x360
Pad $z \times y$ (mm)	10×11	7x10
N pads	36864	124272
el. noise (ENC)	800	
S/N	100	
Sampling frequency (MHz)	25	
N time samples	511	
Channel density (nb. / cm ²)	0.9	1.4

ND280 upgrade TPCs achievements

- First experiment to use ERAM detectors
- Performances similar or better than v-TPCs with ~1/3 less electronics channel density
- New innovative field cage design for high acceptance and dead volume reduction

THE NEW MICROMEGAS MODULES FOR THE HA-TPC THE ENCAPSULATED RESISTIVE ANODE MICROMEGAS

Ref: P. Colas/D. Attié ILC/TPC R&D (M.S. Dixit et al. NIM A518, p. 721, 2004

Choice of the Resistive foil technology for the HA-TPC micromegas readout - Charge spreading which should enable keeping the ~600 μ m spatial resolution with larger pads and improves it at short drift distance \rightarrow less electronic channels, cost reduction

- ASIC spark protection no longer needed → more compact FEE, maximize HA-TPC acceptance
- Encapsulated mesh @ GND + insulating layer → potentially lower track distorsions & better S/N

	ERA		MENT	D. Attié et al. NIM A1052, (2023), 164288. doi.org/10.1016/j.nima.2023.168248
	D. Attié et al. NIM A984, (2020), 16. <u>doi:10.1016/j.nima.2019.163286</u>	B286. D. Attié et al. NIM A1025, (2022), 1661 doi:10.1016/j.nima.2019.166109	^{109.} Nov. 12 PRR	Pre-series To series production
ILC-TPC heritage	2018	2019	2020	▼ 2021
	CERN/T9 test bear	n DESY test beam		ERAM-01 @ DESY 2021 ½ TPC @ CERN/T10 sept. 2022
	2018 MM0-DLC#	2019 MM1-DLC1 & 2	2020 ERAM-P1 & P2	Production ERAM-xx (ERAM-01-28)
Readout PCB	v-TPC PCB	HA-TPC V1 + ARC FEE	HA-TPC V2 + final FEE V1	HA-TPC V2 + final FEE V2
Size	34 × 36 cm ²	34 × 42 cm ²	34 × 42 cm ²	34 × 42 cm ²
Pads	48 × 36 cm ²	32 × 36 cm ²	32 × 36 cm ²	32 × 36 cm ²
Pad size	6,85 × 9,65 mm ²	10,09 × 11,18 mm ²	10,09 × 11,18 mm²	10,09 × 11,18 mm ²
Number of pads	1728	1152	1152	1152
DLC resistivity (MΩ/sq.)	~2,5 (original foil) Not meas.on detector ILC/TPC foil	0,32-0,44 (batch#P1 foils) 0,2-0,27 (meas. on detector)	0,28-0,40 (batch#P1 foils) 0,15-0,22 (meas. on detector)	~1 (foils) / ~0.28-0,4 (det.) Top TPC: 1-1.5 (foils) After baking: 0,4-0,55
RC _{design} [ns/mm ²] RC _{data} [ns/mm ²]	~260	50 <rc<70< td=""><td>15<rc<23< td=""><td>55<rc<78 102<rc<145< td=""></rc<145<></rc<78 </td></rc<23<></td></rc<70<>	15 <rc<23< td=""><td>55<rc<78 102<rc<145< td=""></rc<145<></rc<78 </td></rc<23<>	55 <rc<78 102<rc<145< td=""></rc<145<></rc<78
Insulation layer	200 µm glue + 50 µm APICAL	75 μm glue + 50 μm APICAL	200 μm glue + 50 μm APICAL	150 μm glue + 50 μm APICAL
Expected σ (mm) For 200 ns peaking t For 412 ns peaking t	~1,6 ~2,3	~4 ~5,6	~6 ~8,5	~3,8 ~5,4
dE/dX (measured 1 det.) Extrapol. to 2 detectors	9 to 9.5% (e- & p) <7%	9 to 9.5 % (e-) with 0.2T <7%	Energy resolution @5.9 keV ⁵⁵ Fe :	Energy resolution @5.9 keV ⁵⁵ Fe to be measured
Spatial resolution (μm) Beam (Horizontal tracks) cosmics	300 (OT)	MM1-DLC1 200 (0 or 0.2T, 200/400 ns t _p) 700 (MM1-DLC2, @370V)	300-350 (ERAM-Px @370V)	@ DESY 07/ 21 380-300 (ERAM-01) for 200ns & 412ns

delbart@cea.fr, ERAM for the T2K/HA-TPCs

<u>cea</u> irfu

Ala

RD51 collaboration meeting, 4-8 december 2023 6/25

THE HA-TPC ERAM MODULE A COMPACT TPC READOUT SYSTEM

ERAM for the T2K/HA-TPCs

ERAM FEE : 2 x 576 ch. FECs (8xAFTER ASICs) T2K/ERAM detector (CERN MPGD workshop + 1 digital FEM (~500 cm² cards)

32+4 ERAM modules needed (detector + FEE + cooling mechanicals)

cea irfu

INTEGRATION OF ERAM DETECTORS IN CLEAN ROOM (~ISO 7-8)

ref: D. Henaff (CEA/IRFU) Coordination @ CERN bdg. 182

Final leak test of FC1 with Helium

Last cleaning inside the cage

First row of ERAM installed

Last ERAM installation

Leak test after ERAM installation

Field cage ready!

« BOTTOM » HA-TPC FROM CERN TO JPARC (JAPAN)

Final validation with cosmics at CERN

after 10 TPC vol. exchange

Gas rack: Control flow and monitor gas quality (GMC+sensors)

cea

<u>Trigger:</u> Readout of the two scintillator panels (1m²)

<u>Half HA-TPC:</u> 27.5kV and 350V on ERAMs Electronic rack: DAQ, ERAM & electronic power supplies

ref: T. Lux (IFAE)

Integration in ND280 « basket » at JPARC (8 sept 2023)

THE HA-TPC READOUT PLANEIN ND280 BASKET @ JPARC (SEPT 8)

cea irfu Alain.delbart@cea.fr, ERAM for the T2K/HA-TPCs RD51 collaboration meeting, 4-8 december 2023 10/25

ERAM MODULE PRODUCTION SEQUENCE

1125

QC0: CONTROL OF GLUE THICKNESS EX: 200 MICRONS GLUE PROTOTYPE

QC2: ELECTRONIC MESH PULSING DETECTING DEFECTS BEFORE GLUING THE ALUMINUM STIFFENER EXAMPLE OF A DEFECT ON **ERAM-20**

- ✓ The "mesh-pulsing" is a QC used before & after gluing of the mechanical stiffener to detect major defects
- ✓ A 1kHz, 300 mV square signal is pulsing the ERAM mesh through a 50 Ω adapted cable
- ✓ The readout electronics DAQ is triggered with a NIM signal synchronized with the mesh pulsing (~5 mn run).

QC2: mesh pulsing before & after « repair »

QC3: X-ray scan gain

QC3: FINAL VALIDATION OF A MODULE THE ERAM ⁵⁵FE X-RAY TEST BENCH @ CERN

- ✓ Each ERAM is paired with 2 Front-End cards and "calibrated" for the use in the experiment
- Effective gain (ERAM * FE) and energy resolution @ 5.9 keV measurement on each pad with \checkmark ERAM DLC layer at 350 V (nominal HV)
- \checkmark The 280 MBg ⁵⁵Fe X-ray source is collimated in a Φ 7 mm spot in the center of each pad
- ✓ The source is moved by an X-Y robot with respect to a reference pad which is "cross-scanned" with the source to locate its center (20 points every 1 mm in X&Y)
- \checkmark Gas flow is 14l/h, the scan starts when RH<0.4% and stable, full scan duration 64h (3 mn/pad)
- Monitoring of "environmental conditions" : Gas composition (supplier certificate), T_{amb}, P_{atm}, \checkmark Δp_{chamber}, T_{gas}, Relative Humidity RH_{Gas out} Gain correlation with T/P
- ✓ HV scan (330 360 V) on pad x20/Y17 (gain tuning)
- Remote shifting with local hardware support

THE UNEXPECTED EFFECT OF THE ERAM **PCB** BACKSIDE LAYER DESIGN ON GAIN

Not on pedestals

220

2000

1800

1600

1400

1200

15

1600

1400

1200

13

Gain from Gauss fit (Fe peak)

09 29L/41R

20

artefacts

1500

1000

131 // 56R

10

Gain from Gauss fit (Fe peak)

+ 03, 12, 18 (200 kΩ/sq.)

1500

1000

This seems to be due to local extra thickness

of copper & soldermask on the backside of the PCB which affects the micromegas amplification gap after DLC foil pressing.

Bare FR4 areas on PCB backside = location of AI stiffener ribs gluing

ERAM detector

ERAM stiffener

ERAM-10 & 13: low gain pads are due to data analysis artefacts

irtu

cea

ISSUES WITH BATCH 7 OF DLC FOILS

CHARGE SPREADING MAPS

Ref: D. Henaff (CEA/Irfu)

Charge sharing maps extracted from X-ray scan pad waveforms

These defects may be correlated with DLC layer defects ... possibly because of too many baking treatments of the DLC foils

ISSUES WITH BATCH 7 OF DLC FOILS GAIN GRADIENT ON ERAM-25, 33, 34

Tester name: Laura, ERAM ID: ERAM33, Date: 2023-04-21 23:01:16 Source: Fe55, Comments: Full scan of ERAM33 Ampl peak_thr: 50, Ampl. calc with neighbours: True Scanned: 1152/1152, total time: 63.95 h

Problem at DLC pressing or mesh integration steps, not fully understood

AN EXAMPLE OF A ⁵⁵FE X-RAY SCAN OF A "TYPICAL" ERAM

Tester name: Sara, ERAM ID: ERAM30, Date: 2022-07-22 08:47:59 Source: Fe55, Comments: full scan with coordinates from cross-scan 412ns shaping time and 180s run time Ampl peak_thr: 50, Ampl. calc with neighbours: True Scanned: 1152/1152, total time: 65.29 h

AN EXAMPLE OF A ⁵⁵FE X-RAY SCAN ERAM-30

Tester name: Sara, ERAM ID: ERAM30, Date: 2022-07-22 08:47:59 Source: Fe55, Comments: full scan with coordinates from cross-scan 412ns shaping time and 180s run time Ampl peak_thr: 50, Ampl. calc with neighbours: True Scanned: 1152/1152, total time: 65.29 h

RC MAP DERIVED FROM X-RAY SCANS

ref: D. Attié et al, Nucl.Instrum.Meth.A 1056 (nov 2023) Doi: 168534

cea

irtu

STATUS OF ERAM PRODUCTION (06/23)TO BE COMPLETED WITH THE LAST ERAM SCANS

ref: D. Attié et al, Nucl.Instrum.Meth.A 1056 (nov 2023)

Doi: 168534

Gain v/s DLC voltage

cea

irfu Alain.delbart@cea.fr, ERAM for the T2K/HA-TPCs

cea

ERAM PRODUCTION SUMMARY

The T2K/HA-TPC ERAM detector module was designed to be a compact 34 x 42 x 4 cm³ unit suitable to pave large readout endcaps of TPCs.

The production is finished with a total of 36 detectors qualified for use in the two HA-TPCs. A lot was learnt from this 2 years production and difficulties were overcome for an overall very good quality of the detectors : less than 1/1000 "dead" pads and no major issues to operate the detectors.

■ The detector response modelization is consolidated and the performances of the detectors, driven by the RC constant of the charge spreading DLC stack, are within the specifications for the readout of the ND280/HA-TPCs.

■ The use of the bottom HA-TPC in the T2K ND280 detector just began and its commissioning is on-going smoothly.

The TOP HA-TPC will be equipped with its 16 ERAMs in February next year for an installation of the TPC in the basket of ND280 in April, finalizing the upgrade of the Near detector of T2K.