

High-rate 3GEM detector with the SRS VMM for AMBER

Michael Lupberger

30th (and last) RD51 Collaboration Meeting CERN, 05.12.2023,

lrfu

saclay

15t PD51 meeting Study of gain fluctuations with InGrid and TimePix

Michael Lupberger

5th RD51 Collaboration Meeting

24-27 May 2010 Freiburg, Germany

- AMBER and its Physics Program
- AMBER GEM Detectors
- 2023 Pilot Run with SRS VMM

<u>Apparatus for Meson and Baryon Experimental Research:</u>

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

<u>Apparatus for Meson and Baryon Experimental Research:</u>

• In the context of CERN's *Physics Beyond Collider* initiative: Proposal for a *New QCD facility at the M2 beam line of the CERN SPS*

SPSC-I-250

January 28, 2019

Letter of Intent:

A New QCD facility at the M2 beam line of the CERN SPS*

COMPASS++[†]/AMBER[‡]

B. Adams^{13,12}, C.A. Aidala¹, R. Akhunzyanov¹⁴, G.D. Alexeev¹⁴, M.G. Alexeev⁴¹, A. Amoroso^{41,42},
 V. Andrieux⁴¹, N.V. Anfimov¹⁴, V. Anosov¹⁴, A. Antoshkin¹⁴, K. Augsten^{14,32}, W. Augustpink⁴⁶,
 C.D.R. Azevedo⁴, A. Azhibekov², B. Badelek⁴⁷, F. Balestra^{41,42}, M. Ball⁵, J. Barth⁹, R. Beck⁸,
 Y. Bedfer³⁰, J. Berenguer Anteguer^{41,42}, J.C. Bernauer^{54,45}, J. Bernhard¹⁰, M. Bollak³¹, P. Bordalo^{23,a},
 F. Bradamante³⁹, A. Bressan^{38,39}, M. Büchele¹⁶, V.E. Burtsev⁴⁰, W.-C. Chang³⁵, C. Chatterjee¹¹,
 X. Chen²¹, M. Chosso^{41,42}, A.G. Chumakov⁴⁰, S.-U. Chung^{17,4}, A. Cicuttin^{59,4}, P. Correi¹,
 M.L. Crespo^{30,2}, S. Dalla Torre³⁰, S.S. Dasgupta^{31,43}, S.V. Donskov³³, N. Doshita⁴⁰,

<u>Apparatus for Meson and Baryon Experimental Research:</u>

- In the context of CERN's *Physics Beyond Collider* initiative: Proposal for a *New QCD facility at the M2 beam line of the CERN SPS*
- LOI: June 2018; Submitted to SPSC January 2019

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

January 28, 2019

Letter of Intent:

A New QCD facility at the M2 beam line of the CERN SPS*

COMPASS++[†]/AMBER[‡]

B. Adams^{13,12}, C.A. Aidala¹, R. Akhunzyanov¹⁴, G.D. Alexeev¹⁴, M.G. Alexeev⁴¹, A. Amoroso^{41,42},
 V. Andrieux⁴¹, N.V. Anfimov¹⁴, V. Anosov¹⁴, A. Antoshkin¹⁴, K. Augsten^{14,32}, W. Augustpink⁴⁶,
 C.D.R. Azevedo⁴, A. Azhibekov², B. Badelek⁴⁷, F. Balestra^{41,42}, M. Ball⁵, J. Barth, R. Beck⁸,
 Y. Bedfer³⁰, J. Berenguer Anteguer^{41,42}, J.C. Bernauer^{54,45}, J. Bernhard¹⁰, M. Bollak³¹, P. Bordalo^{23,a},
 F. Bradamante³⁹, A. Bressan^{38,39}, M. Büchele¹⁶, V.E. Burtsev⁴⁰, W.-C. Chang³⁵, C. Chatterjee¹¹,
 X. Chen²¹, M. Chosso^{41,42}, A.G. Chumakov⁴⁰, S.-U. Chung^{17,4}, A. Cicuttin^{59,4}, P. Correia¹,
 M.L. Crespo^{35,2}, S. Dalla Torre³⁰, S.S. Dasgupta^{31,43}, S.V. Donskov³³, N. Doshita⁴⁰,

<u>Apparatus for Meson and Baryon Experimental Research:</u>

- In the context of CERN's *Physics Beyond Collider* initiative: Proposal for a *New QCD facility at the M2 beam line of the CERN SPS*
- LOI: June 2018; Submitted to SPSC January 2019
- Proposal for Phase 1 to SPSC: June (update Sept.) 2019

B. Adams^{14,13}, C.A. Aidala¹, G.D. Alexeev¹⁵, M.G. Alexeev^{42,43}, A. Amoroso^{42,43}, V. Andricux^{45,20}, N.V. Anfimov¹⁵, V. Anosov¹⁵, A. Antoshkin¹⁵, K. Augsten^{15,32}, W. Augustyniak⁴⁷, C.D.R. Azevedo¹, B. Badelek⁴⁶, F. Balestm^{42,43}, M. Ball⁸, D. Banerjee^{45,20}, J. Barth⁸, R. Beck⁸, J. Berenguer
 Antequera^{24,31}, J.C. Bernauet^{35,46}, J. Bernhard^{20,6}, M. Bodlak¹¹, F. Bradamante¹⁰, A. Bressan^{29,40}, M. Bidchel¹⁷, V.E. Burtsev⁴¹, C. Butler³, C. Chatterjee^{19,40}, M. Chiosso^{42,43}, A.G. Chumakov⁴¹, S. U. Chung^{18,5}, A. Cicuttin^{40,6}, M. Connors, A. Contin⁶, P. Correia⁴, M.L. Crespo^{40,6}, S. Dalla Torre¹⁰, S.S. Dasgupta¹¹, S. Dashya¹¹, I. Denisenko¹⁵, O.Yu. Denisov⁴⁵, I. Dhara¹¹
 F. Donato⁴⁴, S.V. Donskov³³, N. Doshita⁵⁰, Ch. Dreisbach¹⁸, W. Diinnweber⁴, R.R. Dusaev⁴¹, A. Dzyuba¹⁹, A. Efremov¹⁵, P. Egelhof¹⁶, F. Ehrler²¹, A. Elagin¹⁴, P.D. Eversheim⁵, P. Faccioli²³, M. Fascisl²¹, M. Friedrich¹⁵, M. Friedrich¹⁶, F. Schen¹⁷, C. Franco³³, J. M. Friedrich¹⁶, K. Drinosko³¹, M. Friedrich¹⁵, M. Frie

<u>Apparatus for Meson and Baryon Experimental Research:</u>

- In the context of CERN's *Physics Beyond Collider* initiative: Proposal for a *New QCD facility at the M2 beam line of the CERN SPS*
- LOI: June 2018; Submitted to SPSC January 2019
- Proposal for Phase 1 to SPSC: June (update Sept.) 2019
- Physics program recommended by SPSC: October 2020

SPSC 139, Oct. 2020

The Committee **recommends** approval of the proposal SPSC-P-360 by the AMBER Proto-Collaboration to use the M2 beam-line before LS3 to perform measurements related to:

(i) Drell-Yan and J/Psi production using the conventional M2 hadron beam;

(ii) proton-induced antiproton production cross sections for dark matter searches;

(iii) the proton charge radius using muon-proton elastic scattering.

The proton-radius program is contingent on a successful pilot run previously approved for the first year of SPS operation after the Long Shutdown LS2.

<u>Apparatus for Meson and Baryon Experimental Research:</u>

- In the context of CERN's *Physics Beyond Collider* initiative: Proposal for a *New QCD facility at the M2 beam line of the CERN SPS*
- LOI: June 2018; Submitted to SPSC January 2019
- Proposal for Phase 1 to SPSC: June (update Sept.) 2019
- Physics program recommended by SPSC: October 2020
- Approved as NA66 by the CERN Research Board: Dec. 2020

proposals that are requesting beam there, NA64-mu and MUonE. The Research Board approved AMBER for its Phase-1 measurements until LS3, with the beam allocation being subject to the optimisation of the overall schedule at the SPSC. The experiment will have reference number NA66.

AMBER – WHERE?

Apparatus for Meson and Baryon Experimental Research

M2 beamline (EHN2):

- most versatile beamline at CERN
- high-intensity beams of μ^{\pm} , π^{\pm} , p
- intensity limited by radiation protection

Approved Phase-1 physics program:
1) Drell-Yan and charmonium production using conventional hadron beams (DY)
2) Measurement of antiproton production cross sections for dark matter search (pX)
3) Proton-radius measurement using elastic muon-proton scattering (PRM)

UNIVERSITÄT BONN

Proton-radius measurement using elastic muon-proton scattering

Goal: complement existing experiments to measure r_n with μ to resolve discrepancies

AMBER - PRM

Proton Radius Measurement (PRM) by elastic muon-proton scattering

- High-intensity muon beam from SPS M2 beam line
- High-pressure hydrogen TPC as active target
- Muon spectrometer

UNIVERSITÄT BONN

Modified from: B. Adams et. al., COMPASS++/AMBER: Proposal for Measurements at the M2 beam line of the CERN SPS Phase-1: 2022-2024 (2019), CERN-SPSC-2019-022

AMBER - PRM

Modified from: B. Adams et. al., COMPASS++/AMBER: Proposal for Measurements at the M2 beam line of the CERN SPS Phase-1: 2022-2024 (2019), CERN-SPSC-2019-022

Michael Lupberger

AMBER - PRM

Minimum setup to allow PRM physics with required precision (from simulations): 3 stations with each large 2 GEM detectors

UNIVERSITÄT BONN

AMBER PRM readout paradigm

- · Incident and scattered muon instantly measured with trackers
- Recoil proton measured in (slow) TPC
- \implies Assignment can only be done in high-level trigger
- \Rightarrow Continuous readout and self-triggering required

GEM UPGRADE

 $G1G \rightarrow G3G$ Large area GEMs (30.72 x 30.72 cm²)

- COMP_ASS • G1G: from 2001
- (G2G: Pixel-GEMs from 2008) compass
- + Know-how from ALICE
 - ⇒ G3G:
 - 768 strips per side
 - Strips split for higher rate \rightarrow 4 quarters

ALICE IROC GEM foil in stretching frame

GEM UPGRADE – INSTALLATION

Final COMPASS run and AMBER pX

- Cabling
- Shielding
- Installation
- Triggered APV25 readout in old COMPASS DAQ

- $G3G \rightarrow G4G \rightarrow G5G$
- G4G: Large area GEM as for COMPASS with self-triggered readout
- G5G: Large are GEM with pads in the centre (as PixelGEMs) and self-triggered readout

GOALS FOR PRM PILOT RUN SEPT. 2023

- 1. Test G3G detector with SRS- VMM readout \rightarrow G4G prototype
- 2. Increased number of VMM chips (8+1 \rightarrow 48+1) compared to Pilot Run 2021
- 3. Scan operation parameter space \rightarrow find working point
- GEM gain (HV)

UNIVERSITÄT BONN

- VMM gain (preamplifier)
- VMM threshold (noise acceptance)
- 4. More/better data compared to 2021 Pilot Run

Installation position behind magnet SM2

Detector equipment with VMM electronics in GDD lab

Detector installation in AMBER hall

- Detector/Electronics much more noise at beam position than in GDD lab.
- Spikes on VMM baseline, when HV (GND) connected. Not seen in GDD lab.

NOISE STATUS AFTER INSTALLATION 1

To evaluate noise:

- BNC cable attached to monitoring output (shaper out) of one random VMM chip
- Connected to oscilloscope
- Look at baseline of a random channel of that VMM chip
- Quantitative noise measures:
 - Automatic measure of amplitude \rightarrow statistics amplitude RMS
 - Automatic measure of peak to peak \rightarrow statistics peak to peak mean
 - Oscilloscope trigger rate at given threshold

Status after installation:

- RMS \approx 12 mV
- Peak to peak mean \approx 100 mV
- Rate at 20 mV threshold several kHz Main impact: Strange spikes from HV GND

- 2 main issues to solve:
- A) Noise and spikes
- B) One quadrant much more noisy than others (different noise)

A) Noise and spikes

Observation: Spikes disappear/reduce, when, in addition to BNC cable, another GND connection between osci and detector is established e.g. a probe needle GND

INSTALLATION 2 – SOLUTIONS A+B

Long story short:

A) Noise and spikes

→ GND loop closed, when osci connected → better GND between osci and detector ⇒ remove osci for measurements, HV filter box

B) One quadrant much more noisy than others (different noise)

 \rightarrow one of the four SRS adapter cards = power supply for VMMs introduced noise \Rightarrow exchanged

C) Further increase GND, close open loops on GND calbes, ...

05.12.2023

Michael Lupberger

DAQ PC

- Update software vmmdcs, DAQ scripts, monitoring, prepare file system, logbook
- Channel mapping and geometry file
- Threshold calibration at VMM preamp gain 9mV/fC to 30 mV above baseline
- Could be easily lowered to 25 mV, few noisy channels
- 20 mV should be reachable without tooo much effort (13.8 ke threshold)
- Remote control and network connection

Services, interconnection

- LEMO cables for COMPASS trigger BOS, EOS, PHY (+ AMBER time slice)
- Test trigger, tune gain and thl for reliable trigger time stamps data in VMM DAQ
- Safety inspection \rightarrow Better fixation of SRS crate, minor re-cabling
- Noise and stability tests with HV on, define HV measurement points
- Gas

COMMISSIONING & FIRST DATA TAKING

Week 11.-15.09. (first days of primary user)

- Student shift crew Jan Glowacs, Pascal Henkel + ML remote
- Training (dcs, SRS tools,...), commissioning (prev. slide)
- Cosmics data taking
- First beam → monitoring → first online event display (central sector off, sync between FECs wrong)
- Loose hybrid on detector connector

Detector quadrant 1 first online event display

Cosmics flat field, all (but ½ VMM) work, few dead channels

From day 4 (14.09.)

• First GEM HV scan, 9 mV/fC, 30 mV thl (center off here)

- SRS crate and all VMMs in operation till end of run
 - Excellent system stability
 - One power cycle due to DAQ control mishandling
 - 3x test data taking (before taking spills) unveiled out of sync (ACQ OFF/ON)

UNIVERSITÄT BONN DATA TAKING – PROGRAM

GEM HV scans (3950 V to 4350 V \sim gain 20k), 2 spills for each point, usually at standard beam conditions

- VMM preamp gain 9 mV/fC
 - VMM thl (mV over baseline): 20, 25, 30, 40, 50
- VMM preamp gain 12 mV/fC
 - VMM thl (mV over baseline): (20), 25, 30, 40, 50
- Hadron, high-intensity and wide beam runs
- Long-term measurements (up to 1 run = 200 spills)
 - GEM HV 4300 V (~gain 10 k), VMM preamp gain 12 mV/fC, VMM thl 25 mV,
 - Partially entirely from remote
- This time, the full spills were recorded ;)

VMM GEM almost always ready for data taking,

>90 % no data taking due to SPS issue or access, CO2 empty

 \Rightarrow Data taking stopped on last night of beam time due to full disk

POST BEAM ⁵⁵FE MEASUREMENTS

Reason:

Seen in lab: *Hot spot* = region in detector (corner) with higher gain Detector in lab on table, hot spot at gas inlet corner \Rightarrow Check detector at AMBER setup (hanging, gas in at outlet)

Allowance by RP to use ⁵⁵Fe source from in AMBER Hall by our own

Loose-cut reco for cluster in plane 0/1 and detector, look at ADC spectra Restricted to source position, gaus tip fit to photo peak

DATA EVALUATION – PLANE 0

05.12.2023

FINAL RESULT: PEAK POSITIONS

ADC0+ADC1						ADC0						ADC1					
4711				5638		2468					2839	2243					2695
∓10	∓1.3			∓55		∓6		∓0.8			∓28	∓7		∓0.7			∓21
	4775							2479						2286			
		4927							2439						2482		
∓10		∓1	:	∓12		∓6			∓0.6		∓6	∓6			∓0.5		∓8
4957				5055		2611					2701	2335					2406
Mean	5011					Mean		2590				 Mean		2408			
Stddev	303	6,05	%			Stdde	v	144	5,57	%		Stdde	v	150	6,24	%	

 \Rightarrow \approx 6 % gain variations from ^{55}FE peak position

Has started \bigcirc

Pascal Henkel will start a master thesis on the topic on December 16 \odot

Currently: Working on data synchronization between COMPASS and SRS using tools and experience from Pilot Run 2021

- As in 2021, SPS debunching is not good in first ~500 ms of spill
- This time, we have data also for > 500 ms \odot
- Working on 1-2 runs/spills to develop software
- Sync between:

VMM clusters, COMPASS triggers in VMM system, COMPASS track times

Currently working on:

Graph

- 3 GEM stations (6 detectors) w/ triggerless readout min. requirement for AMBER PRM
- 3rd generation large area GEMs (G3G): 6 detectors built and qualified in lab
- G3G detector with SRS VMM-based triggerless readout = G4G prototype
 - Assembled and tested in GDD lab
 - Operated in AMBER PRM Pilot Run 2032 and in post-beam ⁵⁵Fe measurement
 - Data in large parameter space of GEM HV, preamp gain and thl taken
- Satisfied with the large area GEM detectors → some improvements in mind ⇒ maybe build 1-3 new detectors
- VMM frontend chip behaved reliable and as expected
- SRS VMM worked extremely nice and very reliable
 - No hardware failures after commissioning
 - Convenient slow control software
 - Helpful online monitoring
 - Reliable data acquisition, know-how to sync to COMPASS DAQ

SRS VMM works nice and reliable, but

- VMM hybrid = frontend board not suited perfectly
 - Too much material budget in acceptance regions
 - FPGA close to detector (radiation damage)
 - Too many cables, difficult integration in large system
 - Limited hardware availability
- ⇒ Dedicated VMM-based frontend board
- Several options
 - Bus card with multiplexer + new cooler (FPGA remains)
 - New stretched VMM hybrid (FPGA far outside) + bus card
 - GBT + VL VMM frontend board like e.g. ALICE TPC board for SAMPA
- Design and testing ①, integration into AMBER DAQ ①①
- Or: Use SRS VMM still next year with 6 detectors? Need: 144 hybrids, 24 FECs+DVMMs, 3 CTFs, 3 Eurocrates(or eq. Minicrates) with new ATX, ... + spares Available our group: 14 hybrids, 4 FECs+DVMMs, 1 CTF, 2 Minicrates

Electronics School 2014

Thanks to all for making (not only) working in this collaboration so much fun and RD51 a success!

Let's continue in DRD1!

La Rochelle 2019

CERN: PHYSICS BEYOND COLLIDER

- CERN's Physics Beyond Collider initiative:
- Study group launched 2016
- exploiting the full scientific potential of the CERN's accelerator complex and scientific infrastructures
- Complementary to LHC and other future colliders
- CERN impact on physics landscape in next 10-20 years

- Proposals sensitive to New Physics in the sub-eV mass range
- 4.1 Solar axions helioscopes: IAXO
- 4.2 Laboratory experiments: JURA
- 5 Proposals sensitive to New Physics in the MeV-GeV mass range 5.1 Proposals at the PS beam lines 5.1.1 REDTOP
- 5.2 Proposals at the SPS beam lines
 - 5.2.1 NA64⁺⁺
 - 5.2.2 NA 62^{++}
 - 5.2.3 LDMX @ eSPS
 - 5.2.4 AWAKE 5.2.5 KLEVER
 - 5.2.5 KLEVER 5.2.6 SHiP @ BDF
- 5.3 Proposals at the LHC interaction points
- 5.3.1 FASER
- 5.3.2 MATHUSLA
- 5.3.3 CODEX-b

6 Proposals sensitive to New Physics in the multi-TeV mass range

- 6.1 KLEVER
- 6.2 TauFV

GEM UPGRADE - LAYOUT

Michael Lupberger

GEM UPGRADE - PRODUCTION

Segmented GEMs

Michael Lupberger

GEM UPGRADE – FINAL TESTING (APV)

[Courtesy D. Schaab]

UNIVERSITÄT BONN

PRM PILOT SETUP-VMM GEM POSITION

From 7.-11. August by Virginia, Jan G., Karl, Pascal and Michael

7. August:

Travel, arrival to GDD lab,

8. August:

Equipping detector in GDD lab, first tests 9. August:

Noise reduction in GDD lab, ⁵⁵Fe spectrum

10. August:

Installation

11. August:

Installation, noise reduction, PC setup

Detector equipment with VMM electronics in GDD lab

From 7.-11. August by Virginia, Jan G., Karl, Pascal and Michael

7. August:

Travel, arrival to GDD lab,

8. August:

Equipping detector in GDD lab, first tests 9. August:

Noise reduction in GDD lab, ⁵⁵Fe spectrum

10. August:

Installation

11. August:

Installation, noise reduction, PC setup

Detector equipment with VMM electronics in GDD lab

- Detector/Electronics much more noise than in GDD lab
- Spikes seen in hall, when HV connected. Comes via HV GND. Not seen in GDD lab

NOISE REDUCTION, PC SETUP

After Installation 1: Karl installed noise filter on HV line

- Reduced spikes from \approx 100 mV to \approx 70 mV
- Baseline RMS not much reduced

From 5.-7. September by Karl and Michael

- 5. September: Travel, RD51 test beam experience from Karl, noise reduction
- 6. September: Spike identification, noise reduction
- 7. September: PC setup, threshold equalisation, detector ready for beam

Artifact on oscilloscope?

No! Difference can also be seen when data is acquired.

- Noise free data taking, when no spikes on screen (probe GND connected)
- Much noise, when disconnecting probe GND Disconnecting both probe GND and BNC cable
- Noise free data taking
- Both probe GND and BNC cable connected gives very slightly less noise in DAQ

Disconnecting HV also removes spikes

- \Rightarrow Connecting both HV and oscilloscope GND closes a GND loop !?
- ⇒ Why connecting a second GND between osci and Detector resolves the issue, Spikes only disappear completely, when probe GND connected at specific point
- ⇒ Solution: Disconnect oscilloscope (would anyhow have been done), best unsolder BNC cable on hybrid

Find noise reduction possibilities -> Better GND interconnection between SRS cards

Michael Lupberger

Find noise reduction possibilities –> Better GND connection SRS ↔ detector

+ tightening GND screws

Trigger Typ Width Source C1

4.7 mV

974.53

50 904 ml

2.5 GSals

Find noise reduction possibilities –> Better GND connection SRS ↔ detector

+ tightening GND screws

Trigger Typ Width Source C1

4.7 mV

974.53

50 904 ml

1 805 4

79.576 mV

2.5 GSals

Find noise reduction possibilities –> Closing GND loops in cables and on detector + many many small things

Suspicion: One hybrid in the quadrant is not correctly powered and «swings» Coupling to others via crossed strips

- \rightarrow removing one after the other hybrid from detector \rightarrow seems to be gradual effect
- \rightarrow removing one after the other hybrid from SRS DVMM \rightarrow gradual effect
- \rightarrow check power to hybrids \rightarrow P2 (for VMMs) a bit low for FEC 2 \rightarrow increasing
- \Rightarrow gets a bit better, but not removed completely
- \rightarrow interchanging HDMI cables of hybrids on SRS DVMM to other cards
- \rightarrow noisy sector gone, but increase spread over full detector
- \rightarrow exchanging DVMM of FEC 2 (thanks to Karl/GDD for lending the DVMM)

 \Rightarrow noisy sector gone + noise of whole detector decreased

Suspition: One hybrid in the quadrant is not correctly powered and «swings»

Detector configuration and comparison to Jan's notation from the lab

Source holder prepared by Karl Flöthner and Miranda van Stenis

Tested with 5 minutes exposure, worked ok

- Need ~5-10 minutes exposure per position
- Reduce number of positions due to time limitations
- Hot spot included

Loose-cut reco for cluster in plane 0/1 and detector, look at ADC spectra Restricted to source position, gaus tip fit to photo peak

DATA EVALUATION – PLANE 1

Sightly harder cuts on cluster size

UNIVERSITÄT BONN

Observation: many noise hits, spikes at multiples of 1024

Noise: yes, there are some noisy channels, prominent at low source rate Spikes: saturation? \rightarrow look at hit ADC

DATA EVALUATION - POSITION 61

25428

29.39

15.11

3500

3000

2500

2000 F

1500 F

1000

500 F

200

400

600

adc {det==3 && fec==2 && vmm==15}

63

1000 adc

25428

294

342.5

Entries

Mean

Std Dev

800

COMPARISON - POSITION 61 - 11

UNIVERSITÄT BONN

Plane 0 at 61 profile similar to Plane 1 at 11: Only half amount of

COMPARISON - POSITION 61 - 11

UNIVERSITÄT BONN

Plane 1 at 61 profile similar to Plane 0 at 11: < half amount of channels in saturation in same time, spectrum ok

adc 65

1000

htemp

Entries

Mean

RMS

800

23693

230.4

294.4

SUSPENSIONS, CHECK OF CUT UNIVERSITÄT BONN

Position 61 looks like too noisy – could be misleading due to low source rate More channels in saturation compared to other positions

- Spikes from HV line? Would not lead to saturation, but much noise, many coinc. channels
- Corrupted data? Seen for high noise channels, could be saturation \rightarrow 1 hit +2 neighbors => more stringent cut on cluster size (was 1 => all hits taken) to 5
- => should not affect photo peak, expect large clusters for Fe55 (check \rightarrow yes around 8) adc {det==2 &&plane==0 && pos>310 && pos<370 && adc<5000}

