

The upgraded ALICE TPC

- Aim at taking data with continuous readout at 50 kHz Pb-Pb collisions preserving the performance of the previous system
 Iarge distortions due to IBF and fluctuations to be corrected
- Take pp data at 500 kHz; planned tests at higher rates to test performance and develop tools for data processing, reconstruction, and calibration
- First 'real' HI run took place in October 2023
 - 50 kHz never really reached due to various issues with the machine and the injectors
 - Maximum rate ~47 kHz at the beginning of some fills; rapid luminosity burn out

HV powering scheme

Trips and shorts

- The TPC was installed in the experiment with 2-3 shorted segments (~100 cm² each) from commissioning at the surface, in 2020
- During first ramps of the ALICE solenoid, several trips occurred and 3 more segments got shorted –clear correlation with changing B field
 - decide to ramp the magnet only with GEMs at full voltage: occasional trips but no more shorts
- A few shorts appeared during operation in 2022 and 2023, all disappeared after a few days

Trips upon magnet ramp up/down

Red line: magnet current

Green points: HV trips

- Trips usually happened at beginning of ramp
- Figured that small dust particles at any GEM surface move to a hole and create HV path
- If discharge energy not high enough, dust melts and produces short
- If discharge energy high enough, dust evaporates

Short of full stack

- IROC A11 suddenly tripped and showed ~10 kOhm short in GEM1
 can apply ~10 V across GEM1 with current limit 1 mA
- Happened well into the 2023 heavy-ion run at a moderate particle load (well into a fill)
- Probably a direct short across the foil before any loading resistor
- Studies carried out in the lab to find HV setting that produce signal and back-drifting ions
 - clusters in IROCs needed for good track matching to the inner tracking system
 - being tested in the TPC these days
 - try also to apply some 'treatment'

Trip rate summary

Plans for 2024:

1eeting

- Apply alternative voltage setting (already tested during 2023)
 - Iower trip rate
 - slightly reduced IBF

TPC acceptance at the end of 2023 operation

IDC0 (A-Side)

IDC0 (C-Side)

• ...and then maintenance activities start: AUG tests, electrical maintenance, cooling water maintenance...

Last shorted segment –after the run

- One more segment shorted when the GEMs were under ... 18 Volts!
- Few degrees temperature excursions in the cavern due to various maintenance activities

The TPC readout chain

- 3276 SAMPA-based FECs
- 360 FPGA-based readout cards (CRU) receive all data (continuous readout)
- In the FPGA User Logic area, data are processed: synchronised, signals are corrected for common-mode and ion-tail, zero-suppressed, and densely packed for further processing in the EPN online farm

Common mode and lon tail

0.1 $E_{ind} = 3.5 \text{ kV/cm}$ 0.05 listan adda an a' bar ta ta ta ta 40 -0.0530 -0. 20 -0.15 10 5000 10000 15000 20000 0 end-drift time (ns)

- Common-mode fraction into the pads is ~45 %
- Ion tail due to
 - ions produced at (the bottom of) the holes in GEM4
 - ions produced in the induction gap (gas and field dependent)

These corrections are needed to preserve dE/dx resolution at high occupancies

The Firmware

Plenty of development during the last two years: all functionality implemented (large design) FW finalised and consolidated by mid 2023 Further improvements being implemented (focus on monitoring and debugging)

Data rate between FLPs and EPN farm

TPC data rate GB/s

- TPC rate higher than anticipated (contribution from material and from neutrons)
- FW redesigned to pack the data minimising padding and shortening headers
- Performance at 50 kHz Pb-Pb well below the 1.25 TB/s bandwidth limit

Dense data packing: Green: extrapolated rate from pp to Pb-Pb Blue: measured rate in Pb-Pb

Online workflows and QC

- Various observables with trending and automatic checkers
- Periodic Pulser, Pedestal, and (embedded) Laser runs
- For asynchronous reconstruction:
- IDCs: Integrated Digital Currents (SAMPA data processed through a separate stream)
- SACs: Sampled Analog Currents (per-stack high precision currents from GEM4T)
- SICs: Sampled Ion Currents (FC currents for ion drift velocity measurement)

Conclusions

- The upgraded ALICE TPC, along with the experiment, has successfully taken continuous data during 2022 and 2023, including the first heavy-ion run in October 2023
- HV trip rate as expected
- A couple of surprises with shorts, being addressed
- Effective data processing and online/offline calibration and monitoring in place
- RD51 contributions