X,Y,U,V Four Layer MM-GEM Hybrid Detector Using Segmented GEM Foils

RD51 MEETING 05.12.2023 PHD CHRISTOPH JAGFELD FABIAN VOGEL LMU MUNICH

Bundesministerium für Bildung und Forschung

Micromegas (MM)

(micromesh gaseous structure)

Wire Chamber Readout: Wires, Cathode Strips, Cathode Pads ...

the combination of anode + cathode information improves detector performance

position: wires + cathode strips (2nd coordinate) trigger: cathode pads

GEM Strip-Readout (at the Mesh Location)

- use of a segmented GEM foil instead of the mesh
 - here: strips on lower side of the foil
- the segmented GEM foil is mounted on top of the pillars ($120\ \mu\text{m}$)
- two amplification steps: both: GEM + ANODE can be opeated at relatively low voltages
- readout using APVs: on GEM strips and ANODE strips

2D DLC Micromegas Anode (DLC v1: 10 x 10 cm²)

CERN det. Lab: De Oliveira

- ° 212 readout strips
- ° Strip pitch: 4 GEM holes \triangleq 484 μ m

- standard GEM foil: 10 cm x 10 cm
- 4 mm thick frame (only on top side)

inverse layout exists: strips on top side, bottom side not segmented => works similarly well

MM-GEM Prototype 1 Prototype 2

- Anode DLC:
 - strips top layer: X: 0.25 mm pitch
 - ° strips bottom layer: Y: 0.25 mm pitch
- GEM Foil with strips:
 - ° one side segmented

Y: 0.484 mm pitch

- idea: compare performance of y-layers
 - 1 detector: GEM strips top 1 detector: GEM strips bottom

- Anode DLC:
 - ° strips top layer: **U**: 0.40 mm pitch +45 deg.
 - ° strips bottom layer: V: 0.40 mm pitch -45 deg.
- GEM Foil with strips:
 - ° both sides segmented (top and bottom)

X: 0.484 mm pitch 0 deg. **Y**: 0.484 mm pitch 90 deg.

• full 4 layer layout

1 detector

multiplicities up to 10 clusters / event resolvable

Simulated Signal Creation

Signal Creation: Comparison Measurement - Simulation

SG: segmented GEM

measured signal shape and simulation are in good agreement

FE55: Energy Resolution

- investigation of the pulse height using Fe55
- two peaks:
 - $^\circ~$ peak at 5.9 keV: γ of Fe55
 - ° peak at 2.9 keV: K_{α} photon (Ar)
 - \Rightarrow expected ratio: $\frac{5.9 \ keV}{2.9 \ keV} = 2.03$
- reconstructed ratio close to 2.03 (top - , and GEM - readout strips)

$$\frac{\Delta E}{E}(Fe\,55) = 22.2\,\%(FWHM)$$

Good energy resolution: 22%

Beam Times: H4 October / November 2021 PT1 H4 September 2023 PT2

- investigated MM_GEM hybrids:
 - 1. GEM strips on **bottom side**
 - 2. GEM strips on top side

- determination of **detector efficiency** and **resolution** and **pulse height** for:
 - different voltage combinations
 - different inclination angles

Position along the Beam [mm]

Muons: Pulse Height Comparison GEM-MM

- similar pulse height for top readout strips and GEM strips
 - Pulse height_{top} ≈ 1.5 pulse height_{GEM}
- Pulse height top ≈ 4-5 pulse height bot
 (Optimized anode design exists with strip pitch 0.4 mm, not shown here)

\Rightarrow 2D particle reconstruction is well possible

Efficiency Determination (perpendicular µ-track)

- \Rightarrow similar efficiency for top and GEM readout strips
 - voltage offset: 20 V for all readout planes at detector with GEM strips on the top side (assembly of the detector)
- \Rightarrow efficiency > 90% for GEM readout strips and top readout strips

Spatial Resolution Determination

residual = $x_{track} - x_{measured}$

• resolution determination via double gaussian fit:

$$\sigma_{1/2} = \sqrt{\sigma_{core/tails}^2 - \sigma_{track}^2}$$
$$\sigma = \frac{\sigma_1 x \int gauss_1 + \sigma_2 x \int gauss_2}{\int gauss_1 + \int gauss_2}$$

• track accuracy < σ_{det}

Spatial Resolution (perpendicular µ-track)

μTPC: Principle (20°)

• determination of angle and position using the strip times

angle =
$$90^{\circ} - atan(\frac{t * v_{drift}}{N_{strips} * pitch})$$

(position: μTPC track at $t_{_{1/2}}$)

Angular Resolution μ TPC (20° and 26.5°)

Prototype 2: X/Y/U/V 4 layer detector

- Anode DLC:
 - ° U strips: 0.4 mm pitch
 - ° V strips: 0.4 mm pitch
- GEM Foil:
 - X strips:
 - ° top side
 - ° 0.484 mm pitch (nominal)
 - Y strips:
 - ° bottom side
 - ° 0.484 mm pitch (nominal)

UV strips: position reconstruction

• convert U and V coordinate to X and Y position

$$x = \frac{u+v}{2\cos\varphi}$$
$$y = \frac{u-v}{2\sin\varphi}$$

with $\varphi = 45^{\circ}$

Spatial Resolution (perpendicular µ-track)

• spatial resolution \leq 120 μ m

05 Dez 2023

Efficiency Determination (perpendicular µ-track)

- \Rightarrow efficiency > 90% for U/V readout strips
- => ok !

 \Rightarrow efficiency < 90% for GEM strips

=> detector not yet at the correct working point

Summary: MM-GEM Prototype 1 + 2

- segmented GEM MM hybrids are working, multiple clusters per event are resolvable
- GEM MM hybrid 1: spatial resolution for perpendicular tracks
 - ° 2D tracking with $\sigma_{\!_{x}}\,{\approx}\,$ 80 μm = $\sigma_{\!_{v\text{-GEM}}}$ possible
- spatial resolution for inclined tracks
 - $^\circ~\mu\text{TPC}$ possible on anode strips and GEM strips
 - ° angle reconstruction : $\sigma_{angle} = 2^{\circ}-3^{\circ}$
- Y_{MM} || Y_{GEM}
 - Y-readout with segmented GEM works (tracking efficiency > 90 %)
 - ° X-readout by standard resistive Micromegas anode strips (tracking efficiency > 90 %)
 - 2nd Y-readout by standard resistive Micromegas anode strips (off working point => optimized anode design exists)
- GEM MM hybrid 2: X/Y/U/V detector works, but needs optimization
 - ° MM: spatial resolution < 100 μ m, efficiency > 90 % ok
 - ° GEM: spatial resolution \leq 120 μ m, efficiency < 90% optimization needed

Backup

X/Y Strips : Cluster Limitation

- Two particles at the same time
 ⇒Two signatures in each detector layer (X / Y)
 - \Rightarrow 1D reconstruction works
 - \Rightarrow 2D reconstruction problematic
- ⇒ Solution: 3rd (and 4th) layer of readout strips turned by ±45 deg

X/Y/V Strips : Multiple Particles

- X / Y coordinate given by readout strips at the anode
- V coordinate given by readout strips at the mesh location
- Unique 2D cluster combination possible
- \Rightarrow Further improvement by using charge and time information

 $efficiency = \frac{\pi}{\# particles_{all}}$

Spatial Resolution µTPC (20° and 26.5°)

- charge weighted mean spatial resolution (GEM strips):
 - ° 20°: resolution ~ 350 μm
 - ° 26°: resolution ~ 450 μm
- 25 ns trigger jitter not corrected (+/- 12.5 ns \triangleq 220 μ m)

Spatial Resolution (perpendicular µ-track)

Pitch Reconstruction

- res x VS x (GEM foil) dependency for nominal pitch 0.484 mm
- correction by pitch adjustment
 - ° No res x VS x dependency for 0.491 mm pich
 - ° No res y vs y dependency for 0.486 mm pich
- \Rightarrow stretching of the GEM foil enlarges pitch of GEM strips

Adapterboard (GEM foil)

- decoupling of each APV (ground potential) channel via a high pass filter from HV
- \Rightarrow pulse height reduction by a factor 4.5