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ALICE Time Projection Chamber
Main tracking and charged-particle identification (PID) detector 

Properties 
• Total length: 5m

• Radial dimension: 

• Gas mixture: Ne-CO2-N2 (90-10-5)

• Central electrode and field cage 


‣ Uniform electric field 400 V/cm along beam ( ) axis


Run 3 upgrade 
•  Run 1 and Run 2: Multi-Wire Proportional Chambers


➡ ~1 kHz Pb-Pb: triggered readout

•  Run 3 (2022): Gas Electron Multipliers (GEM)


➡ 50 kHz Pb-Pb: continuous readout

83.5 cm < r < 254.5 cm

z
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Figure 1. Schematic view of the ALICE TPC.

operated in pp, p–Pb, Pb–Pb and Xe–Xe collisions at a variety of collision energies during LHC
Run 1 and Run 2. For further details see [5, 6].

1.2 Upgrade concept

The main objective of the TPC upgrade is to provide sensitivity to a minimum-bias interaction
rate of 50 kHz in Pb–Pb collisions, as foreseen for LHC operation in Run 3 and beyond. This goal
requires elimination of the intrinsic trigger rate limitation of the original MWPC-based TPC [5, 7].
The limitation to about 3 kHz was imposed by the operation of an active ion gating grid, which is
used to collect ions from the amplification region and prevent them from drifting back into the drift
volume, where they would lead to substantial space-charge distortions of the drift field. Further
limitations in MWPC-based readout chambers arise from space-charge e�ects at the amplification
wires and ion tail accumulation, both resulting in substantial rate-dependent non-linearities of the
signal response. Despite the tightened operational demands, the ambitious ALICE physics program
for Run 3 and Run 4 does not allow a degradation with respect to the excellent momentum and
d⇢/dG resolution of the original TPC. The design considerations emerging from these challenging
requirements and their technical solutions were worked out in an extensive R&D program [3, 9]
and will be briefly outlined below.

Operation of the TPC at a collision rate of 50 kHz implies that on average five collision events
pile up within the TPC readout time window of about 100 µs, as given by the typical electron drift
time over the maximal drift length of 2.5 m. This excludes triggered operation and defines the need
for continuous readout, demanding novel gas amplification techniques which provide su�cient ion
blocking without an active gate. The requirement to keep the ion-induced space-charge distortions
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Ion backflow (IBF)
Multiplication of primary electrons 
• Stacks of four Gas Electron Multipliers (GEM)

Ions from amplification enter drift volume 
• Slow drift velocity compared to electrons


‣  vs  

• Optimisation of  to ~1% (gain ~ 2000)

• Ions from n events piling up in the drift volume


‣ e.g. 10.000 events for 50 kHz Pb-Pb

• 


Space-charge density 
• Depends on the interaction rate and collision type 
• Local variations of 

• Fluctuations


‣ Number of events

‣ Event multiplicity

TElectron ≈ 100 µs TIon ≈ 200 ms
⟨IBF⟩

ε = IBF ⋅ gain

ε

electrons

ions
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(a) Cross section of two GEM holes. (b) Top view of a GEM.

Figure 1.5: Images of a GEM made by a Scanning Electron Microscope. Images adapted from
[10, p. 10, 12].

avalanches. Electric drift lines can be seen in Figure 1.6 (a). The drift lines are bent from
one electrode into the hole and than to the other electrode. Inside the hole, an electric field
strength of about 50 kV/cm is achieved applying a voltage of �UGEM = 300V. In Figure 1.6 (b)
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(a) Electric drift lines inside a GEM hole. (b) Example of one electron entering a GEM hole.

Figure 1.6: 2-dimensional projections of a 3-dimensional simulated single GEM hole.

the simulation of a single electron entering a GEM hole is shown. The primary electron (red)
is drifting into the hole and gets accelerated, producing an avalanche of secondary electrons
(blue). The number of produced electrons divided by the amount of incoming electrons is called
multiplication. It is different from the gain, which is defined by the number of extracted electrons
divided by the number of primary electrons. Multiplication and gain can be tuned by �UGEM

as well as by the ratio of the electric field strength inside and beneath the GEM. In contrast to
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Distortions of drift electrons 
• IR dependent


‣ Space-charge from ion back flow and primary ionization

‣ 10 ms


‣ Inner field cage charging up

- Charging up: 

- Discharge: , 


‣ Distortions at higher rates for one IROC, B+ (A-side) 

• Semi static


‣ Charge up of GEM frames

• Static


‣ Misalignment of electric and magnetic field

• Time dependent


‣ V-shape distortions

➡ 50 kHz Pb-Pb: ~15 cm distortions 
➡ 500 kHz pp: ~3 cm distortions

𝒪(min)
𝒪(10min) 𝒪(s)
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Figure 1. Schematic view of the ALICE TPC.

operated in pp, p–Pb, Pb–Pb and Xe–Xe collisions at a variety of collision energies during LHC
Run 1 and Run 2. For further details see [5, 6].
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The main objective of the TPC upgrade is to provide sensitivity to a minimum-bias interaction
rate of 50 kHz in Pb–Pb collisions, as foreseen for LHC operation in Run 3 and beyond. This goal
requires elimination of the intrinsic trigger rate limitation of the original MWPC-based TPC [5, 7].
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d⇢/dG resolution of the original TPC. The design considerations emerging from these challenging
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Operation of the TPC at a collision rate of 50 kHz implies that on average five collision events
pile up within the TPC readout time window of about 100 µs, as given by the typical electron drift
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for continuous readout, demanding novel gas amplification techniques which provide su�cient ion
blocking without an active gate. The requirement to keep the ion-induced space-charge distortions

– 2 –

5 m

400 V/cm 400 V/cm

Outer field cage

Inner field  
cage

Central HV  
Electrode

Beam axis

4The ALICE TPC in lead-lead collisions at Run 3: Space charge corrections Matthias Kleiner - Goethe-Universität FrankfurtRD51 Collaboration Meeting 5-Dec-2023



50 kHz Pb-Pb MC

ρ(r, φ, z)

Ernst Hellbär - Goethe-Universität Frankfurt19-Mar-2020 TPC space-charge distortions in RUN 3

Introduction
Boundary conditions

• Ne-CO2-N2 gas mixture (RUN 3) 
• Nominal drift field of 400 V/cm along z 

- Electron drift time: 100 µs 
- Ion drift time: ~ 200 ms 

Ionization inside the drift volume
• Electrons drift along straight paths 

towards the readout chambers 

Distortions of the nominal drift field
• Imperfections of boundary potentials  

- Static distortions 
• Positive ions from primary ionization or 

gas amplification in ROCs (space-
charge) inside the drift volume 

- Dynamic 
- IR dependent
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Electron movement through the gas

δr,dist

Langevin equation 

• Equation of motion: 


• 


• 


• Integration of  and  fields along electron drift path

• Electric fields


‣ Space-charge (ion backflow + primary ionisation)

- Obtained by simulations (uncertainty IBF, MC)

- Poisson equation: 

- Electric fields: 


‣ Potential inhomogeneities

‣ Misalignment of GEMs etc.


• Magnetic field components: Imperfections of L3 magnet

m
d ⃗u
dt

= q ⃗E + q [ ⃗u × ⃗B ] − K ⃗u

δr(r, φ, z) = c0 ∫
z1+Δz

z1

Er

Ez
dz + c1 ∫
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z1

Eφ

Ez
dz − c1 ∫
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⃗E (r, φ, z) = − ∇Φ(r, φ, z)
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Data driven approach to extract corrections for distortions
Correction of average distortions  
• Already performed during Run 2


Procedure 
1. Reconstruction of distorted TPC track 


‣ Tracking with relaxed tolerances

2. Track matching with ITS track segments

3. Residuals between TPC clusters and reference ITS track


‣ Measurement of 

‣ Storage in 3D map


4. Collect data for full TPC volume 

‣ 


5. Smooth parametrisation of extracted corrections

δY, δZ

(𝒪(min))
δY, δZ → Δx, Δy, Δz

Correction of average distortions 

Ernst Hellbär - Goethe-Universität Frankfurt24-May-2019 The ALICE TPC: Performance and Developments

Space-charge distortion correction in RUN 2
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TPC track finding and matching to external detectors ITS, TRD and TOF 

Interpolation of refitted ITS, TRD and TOF track segments  
to the TPC as reference points for the true track position  

Measurement of !Y, !Z residuals between distorted  
TPC clusters and reference points 

Extraction of real 3D distortion vector  
{dr, dr", dz} by geometrical relations to  
measured 2D residuals 

Correction maps
• Smooth parameterization of  

extracted distortion vectors 
• Time intervals of 20 - 40 min 

‣ Average correction 
‣ Fluctuations within one time interval

δY

1

2

3

4
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Extracted correction maps 
• 50Hz (IR independent distortions)


‣ ExB misalignment etc.

• 38kHz (IR dependent distortions)


‣ Space-charge

Extracted correction maps for distortions
+0.5T, Pb-Pb

+0.5T, Pb-Pb

+0.5T, Pb-Pb

+0.5T, Pb-Pb
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Extracted space-charge distortions vs analytical model

simple analytical model dY (cm)

da
ta

 d
Y 

(c
m

)

38 kHz, +0.5T,  space-charge distortions only

Extracted space-charge map 
• Subtracting 50Hz map from 38kHz map


‣ Space-charge

• Comparison with simple analytical model 

shows good agreement

‣ No variation of IBF across chambers

38 kHz - 50 Hz, +0.5T, Pb-Pb

38 kHz - 50 Hz, +0.5T, Pb-Pb simple analytical model, +0.5T, Pb-Pb

simple analytical model, +0.5T, Pb-Pb
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    ρSC ∝ Iprim ⋅ gain ⋅ IBF

     ADC ∝ Iprim ⋅ gain

primary electron

electrons from  
amplification

ion backflow

Time dependent space-charge variations
Integrated digital currents (IDCs) 
• Integration of ADC values over ~1ms

•     


•     

• Estimate for space-charge density and density 

fluctuations

ADC ∝ Iprim ⋅ gain
ρSC ∝ Iprim ⋅ gain ⋅ IBF
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Time dependent space-charge variations
Integrated digital currents (IDCs) 
• Integration of ADC values over ~1ms

•     


•     

• Estimate for space-charge density and density 

fluctuations


Integrated cluster currents (ICCs) 
• TOF, FT0, FV0, FDD

• Integration of reconstructed clusters


Integrated currents 
• Online processed 


‣ Storage in the CCDB (calibration database)

• Input for corrections


‣ Beam decay, levelling, space-charge distortion 
fluctuations

ADC ∝ Iprim ⋅ gain
ρSC ∝ Iprim ⋅ gain ⋅ IBF

650kHz pp

ID
C

t - t0 (s)

Pb-Pb, 27 kHz -> 4 kHz, run 545345

leveling

beam decay
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Space-charge density fluctuations
Space-charge density dependencies 

1. Number of ion pile-up events (Poisson distribution)

2. Primary + secondary track multiplicity per event

3. Number of tracks for volume element

4. Energy loss per track


• Analytical formula agrees well with fluctuations from MC

• Fluctuations of ~2% expected at 50 kHz Pb-Pb

➡ Distortion fluctuations (𝒪(mm))
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Space-charge distortion fluctuations
DCA as a proxy of distortions and corrections 
• Extrapolation of distorted TPC tracks to primary vertex

• Monitoring of distortions as a function of time (~3ms)

• Correlation of integrated IDCs in time windows with DCAs 


‣ Ions from last ion drift time contribute to space-charge

• Integration time with best correlation used for correction

run 544121, Pb-Pb IDCs DCArphi
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DCA as a proxy of distortions and corrections 
• Extrapolation of distorted TPC tracks to primary vertex

• Monitoring of distortions as a function of time (~3ms)

• Correlation of integrated IDCs in time windows with DCAs 


‣ Ions from last ion drift time contribute to space-charge

• Integration time with best correlation used for correction

Scaling of space-charge distortion corrections 

• corr map(IR) = corr mapIR + (corr mapIR+ − corr mapIR-) ⋅
IDC(t) − ⟨IDCmap⟩

⟨IDCmap+⟩ − ⟨IDCmap−⟩

corr mapIR=27kHz corr mapIR=27kHz − corr mapIR=19kHz
without IDC scaling with IDC scaling

run 544121, Pb-Pb IDCs DCArphi
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Space-charge distortion fluctuations correction



Further distortions: Charge-up of GEM frames
GEM frame 
• Potential difference between GEM frame (insulator) and GEM1

• Time until charged-up depends on IR and the past IR

• Distortions at boundaries of the GEM frame


‣ Steep gradient
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Charge-up of GEM frames
GEM frame 
• Potential difference between GEM frame (insulator) and GEM1

• Time until charged-up depends on IR and the past IR

• Distortions at boundaries of the GEM frame


‣ Steep gradient

• Accurate description with analytical models

data data - (model SC + ExB) data - (model SC + ExB + GEM frames)

Distortions due to charging of GEM frames
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Pb-Pb, 15 kHz, +0.5 T, run 544123 Pb-Pb, 15 kHz, +0.5 T, run 544123 Pb-Pb, 15 kHz, +0.5 T, run 544123



Space-charge distortions 
• 50 kHz Pb-Pb: ~15 cm distortions 
• 500 kHz pp: ~3 cm distortions

• Correction with data driven ITS-TPC map

• Space-charge density fluctuations and LHC beam variations


‣ Scaling of space-charge correction map with IDCs


• Further sources of distortions near GEM frames

‣ Charging of frames

‣ Steep gradient distortions

Summary
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