The ALICE TPC in lead-lead collisions at Run 3: Space charge corrections

Matthias Kleiner Goethe-Universität Frankfurt RD51 Collaboration Meeting December 4-8, 2023

ALICE Time Projection Chamber

Main tracking and charged-particle identification (PID) detector

Properties

- Total length: 5m
- Radial dimension: 83.5 cm < r < 254.5 cm
- Gas mixture: Ne-CO₂-N₂ (90-10-5)
- Central electrode and field cage
 - Uniform electric field 400 V/cm along beam (z) axis

Run 3 upgrade

- Run 1 and Run 2: Multi-Wire Proportional Chambers
 ~1 kHz Pb-Pb: triggered readout
- Run 3 (2022): Gas Electron Multipliers (GEM)
 - ➡ 50 kHz Pb-Pb: continuous readout

Beam axis

Ion backflow (IBF)

Multiplication of primary electrons

• Stacks of four Gas Electron Multipliers (GEM)

lons from amplification enter drift volume

- Slow drift velocity compared to electrons
 - $T_{Electron} \approx 100 \,\mu s \, vs \, T_{Ion} \approx 200 \, ms$
- Optimisation of $\langle IBF \rangle$ to ~1% (gain ~ 2000)
- Ions from *n* events piling up in the drift volume
 - e.g. 10.000 events for 50 kHz Pb-Pb
- $\varepsilon = IBF \cdot gain$

Space-charge density

- Depends on the interaction rate and collision type
- Local variations of ε
- Fluctuations
 - Number of events
 - Event multiplicity

Overview of distortions

Distortions of drift electrons

- IR dependent
 - Space-charge from ion back flow and primary ionization
 - ► 10 ms
 - Inner field cage charging up
 - Charging up: $\mathcal{O}(min)$
 - Discharge: $\mathcal{O}(10 \text{min}), \mathcal{O}(s)$
 - Distortions at higher rates for one IROC, B+ (A-side)
- Semi static
 - Charge up of GEM frames
- Static
 - Misalignment of electric and magnetic field
- Time dependent
 - V-shape distortions
- ➡ 50 kHz Pb-Pb: ~15 cm distortions
- ➡ 500 kHz pp: ~3 cm distortions

Electron movement through the gas

Langevin equation

• Equation of motion: $m\frac{d\vec{u}}{dt} = q\vec{E} + q\left[\vec{u} \times \vec{B}\right] - K\vec{u}$

•
$$\delta_r(r,\varphi,z) = c_0 \int_{z_1}^{z_1+\Delta z} \frac{E_r}{E_z} dz + c_1 \int_{z_1}^{z_1+\Delta z} \frac{E_\varphi}{E_z} dz - c_1 \int_{z_1}^{z_1+\Delta z} \frac{B_\varphi}{B_z} dz + c_2$$

•
$$\delta_{r\varphi}(r,\varphi,z) = c_0 \int_{z_1}^{z_1+\Delta z} \frac{E_{\varphi}}{E_z} dz - c_1 \int_{z_1}^{z_1+\Delta z} \frac{E_r}{E_z} dz + c_2 \int_{z_1}^{z_1+\Delta z} \frac{B_{\varphi}}{B_z} dz + dz$$

- Integration of E and B fields along electron drift path
- Electric fields
 - Space-charge (ion backflow + primary ionisation)
 - Obtained by simulations (uncertainty IBF, MC)
 - Poisson equation: $\Delta \Phi(r, \varphi, z) = -\rho(r, \varphi, z)$
 - Electric fields: $\overrightarrow{E}(r, \varphi, z) = -\nabla \Phi(r, \varphi, z)$
 - Potential inhomogeneities
 - Misalignment of GEMs etc.
- Magnetic field components: Imperfections of L3 magnet

Data driven approach to extract corrections for distortions

Correction of average distortions

Already performed during Run 2

Procedure

- 1. Reconstruction of distorted TPC track
 - Tracking with relaxed tolerances
- 2. Track matching with ITS track segments
- Residuals between TPC clusters and reference ITS track
 - Measurement of $\delta Y, \delta Z$
 - Storage in 3D map
- 4. Collect data for full TPC volume ($\mathcal{O}(\min)$)

• $\delta Y, \delta Z \to \Delta x, \Delta y, \Delta z$

5. Smooth parametrisation of extracted corrections

2

Extracted correction maps for distortions

Extracted correction maps

- 50Hz (IR independent distortions)
 - ExB misalignment etc.
- 38kHz (IR dependent distortions)
 - Space-charge

7

5-Dec-2023

Matthias Kleiner - Goethe-Universität Frankfurt

Extracted space-charge distortions vs analytical model

The ALICE TPC in lead-lead collisions at Run 3: Space charge corrections

Time dependent space-charge variations

Integrated digital currents (IDCs)

- Integration of ADC values over ~1ms
- $ADC \propto I_{prim} \cdot gain$
- $\rho_{SC} \propto I_{prim} \cdot gain \cdot IBF$
- Estimate for space-charge density and density fluctuations

Time dependent space-charge variations

Integrated digital currents (IDCs)

- Integration of ADC values over ~1ms
- ADC $\propto I_{prim} \cdot gain$
- $\rho_{SC} \propto I_{prim} \cdot gain \cdot IBF$
- Estimate for space-charge density and density fluctuations

Integrated cluster currents (ICCs)

- TOF, FT0, FV0, FDD
- Integration of reconstructed clusters

Integrated currents

- Online processed
 - Storage in the CCDB (calibration database)
- Input for corrections
 - Beam decay, levelling, space-charge distortion fluctuations

S
Ē
2
2
-

S
1
2
×
Q
G
-

Space-charge density fluctuations

Space-charge distortion fluctuations

DCA as a proxy of distortions and corrections

- Extrapolation of distorted TPC tracks to primary vertex
- Monitoring of distortions as a function of time (~3ms)
- Correlation of integrated IDCs in time windows with DCAs
 - Ions from last ion drift time contribute to space-charge
- Integration time with best correlation used for correction

ertex ns) th DCAs -charge ection

correlation factor

Space-charge distortion fluctuations correction ALICE

The ALICE TPC in lead-lead collisions at Run 3: Space charge corrections

RD51 Collaboration Meeting

Further distortions: Charge-up of GEM frames ALICE

5-Dec-2023

Charge-up of GEM frames

GEM frame

- Potential difference between GEM frame (insulator) and GEM1
- Time until charged-up depends on IR and the past IR
- Distortions at boundaries of the GEM frame
 - Steep gradient
- Accurate description with analytical models

Distortions due to charging of GEM frames

tor) and GEM1 st IR

Summary

Space-charge distortions

- 50 kHz Pb-Pb: ~15 cm distortions
- 500 kHz pp: ~3 cm distortions
- Correction with data driven ITS-TPC map
- Space-charge density fluctuations and LHC beam variations
 - Scaling of space-charge correction map with IDCs
- Further sources of distortions near GEM frames
 - Charging of frames
 - Steep gradient distortions

n variations DCs