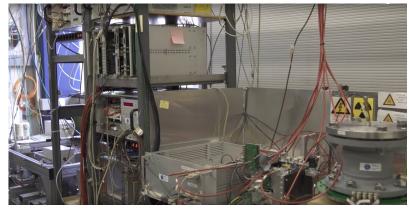
## **The Aachen Gas Database**

### **RD51 Collaboration Meeting**

Nick Thamm, RWTH Aachen University


CERN - 07.12.2023

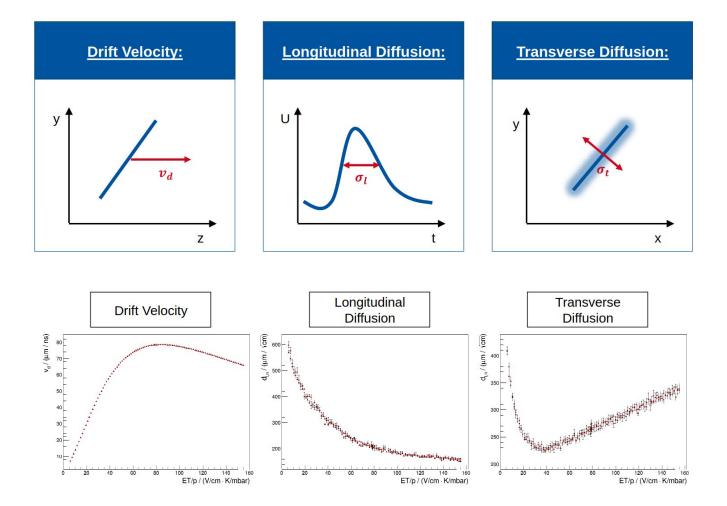


#### The Aachen gaseous-detector group

- TPC R&D and operation
  - Participation in the T2K experiment (near detector gaseous TPC)
  - Involved in the ongoing upgrade
  - Calibration of TPC data for optimum track reconstruction
- Construction of monitor chambers (Mini-TPCs)
  - Continuous measurement of gas quality for best tracker performance
  - Rolling calibration of TPC
  - Detector safety
- Mini-TPCs:

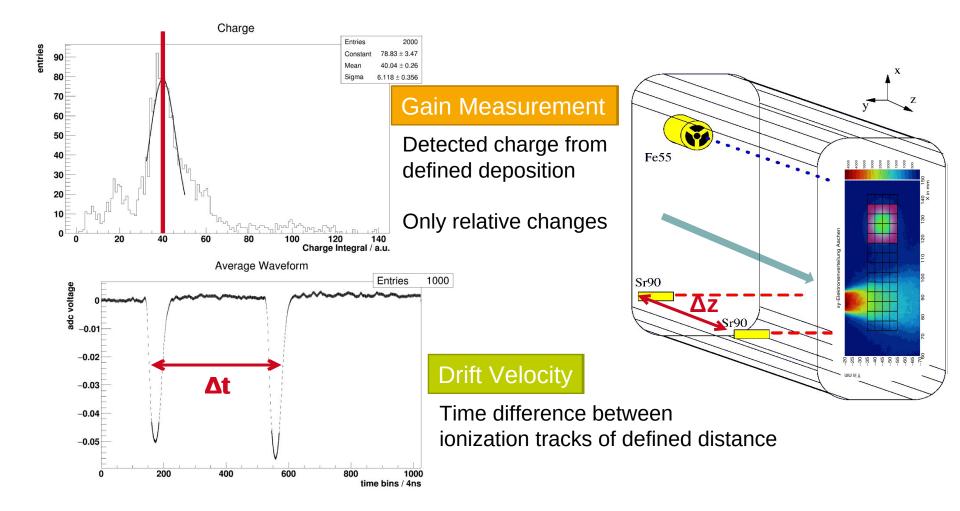
- Measurements of electron drift parameters
- Wide range of operating pressures and drift fields
- Various types of anode topologies
- Mixing of gases with sub-percent accuracy









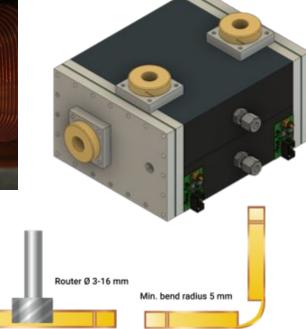

#### **Measurement quantities**

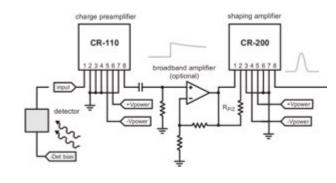




#### Gas Monitoring System @ ND280 / RWTH





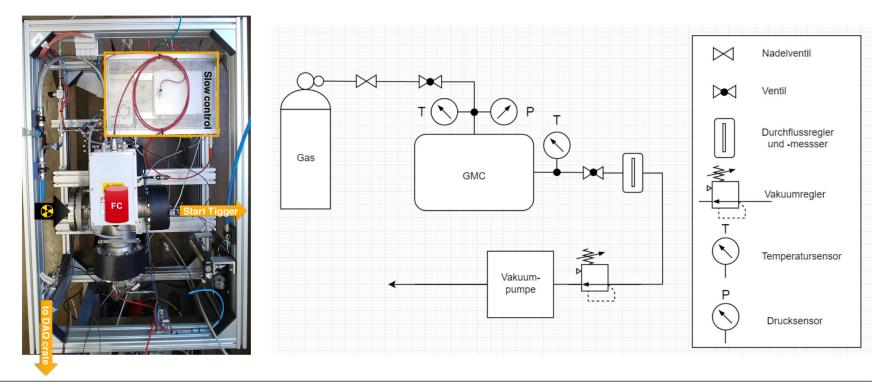




#### **Gas monitor chambers (GMC)**

- Field-cage:
  - Semi-flex PCB
  - FR4 less hygroscopic
  - Halogen-free
  - Easier gluing
  - New strip geometries
- Amplifier:
  - Commercial solution
  - Cremat charge sensitive amplifier and shaper
- Materials:
  - Radiation-hard (PEEK / POM)
  - Low outgassing
- Auxiliary sensors
  - Temperature
  - Pressure
  - Humidity
  - Oxygen









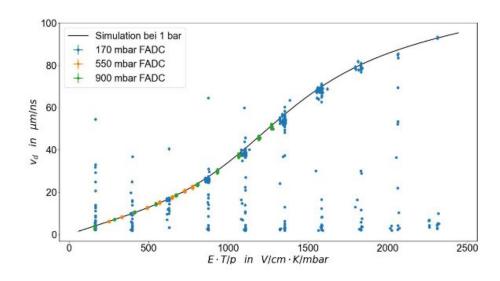


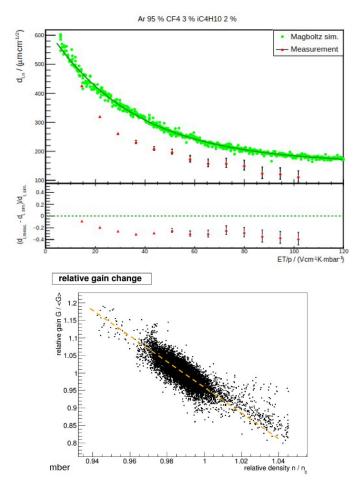

#### **High/Low Pressure GMC**

- Existing GMC setup for high pressures up to 10bar (HPGMC)
- Easily adaptable for low pressure measurements
  - External vacuum pump
  - Vacuum regulator integrated into system



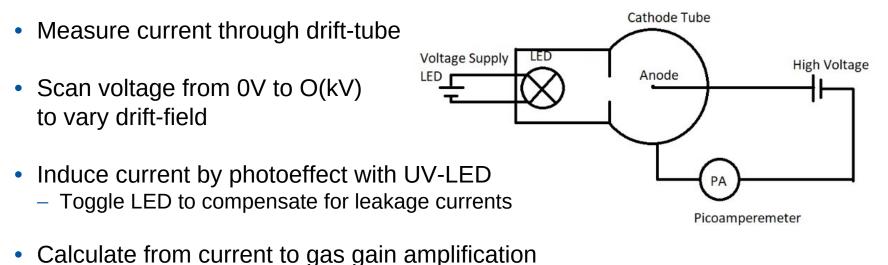






#### **Results on high/low pressure**

- Electron drift parameters scale with temperature and pressure
- Various measurement-techniques
  - Time-over-threshold
  - Waveform-fitting

7


Results show good agreement with simulation

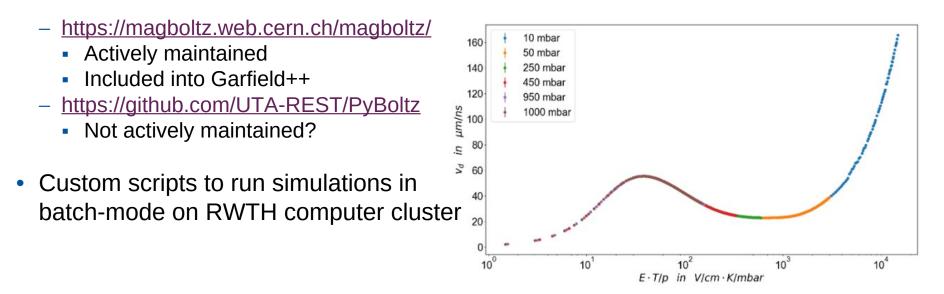




The Aachen gas-database Nick Thamm | thamm@physik.rwth-aachen.de III. Physikalisches Institut B

#### **Measurement of first Townsend coefficient**




- Calculate norm callent to gas gain amplification
- Match gas gain to first Townsend coefficient
- Compare to simulation





#### Simulation

- Magboltz / Pyboltz
  - Programs to simulate electron transport in gas mixtures
    - Drift velocity
    - Diffusion (longitudinal / transverse)
    - Gas gain (Townsend-coefficient / attachment)





| Aache                                           | n GasDB                               | Home Abo                              | ut Citations  | Imprint                                | Privacy Contact U | Js                             |                                       |           |                       | W. Wth-aachen.de/gaso                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------------------------------------------------|---------------------------------------|---------------------------------------|---------------|----------------------------------------|-------------------|--------------------------------|---------------------------------------|-----------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0                                               | © ≤ E [V/cm] ≤ 1000000 0 1. Select ga |                                       |               | 1. Select g                            | ases              | 2. Select a ga                 | as mixture                            |           | 3. Select a run.      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                 |                                       |                                       |               |                                        | × Argon (Ar)      | Methane (CH4)                  | ×Ar_95.00_CH4_                        | 5.00 (P5) |                       | *[magboltz 11.7] Ar-CH4-P5                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| )                                               | 0                                     | ≤ p [mbar] ≤                          | 11000         | 0                                      | Submit Gases      | Strict                         | Submit Mixture                        |           |                       | Add Run to List                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| D.                                              | 0                                     | ≤ B[T] ≤                              | 10            | 0                                      |                   |                                |                                       |           | 6                     | Jacob Salar                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| t Style                                         |                                       | nplate for impor                      | ting and work | king with th                           |                   | x-axis Variable                | Share Runs                            |           | x-axis Type           | Remove Run from List                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                 |                                       |                                       |               |                                        | *                 | [ =                            |                                       | *         | Linear                | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| arker Siz                                       |                                       |                                       |               |                                        |                   | y-axis Variable                |                                       | *<br>*    |                       | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| rker Siz                                        |                                       |                                       |               |                                        |                   | y-axis Variable<br>v_z [µm/ns] | <b></b>                               |           | Linear<br>y-axis Type | <ul> <li>Ar_95.00_CF4_3.00_JC4H10_2.00 (T2K-gas): [magboltz</li> <li>11.7] T2Kgas-H2O</li> <li>Ar_95.00_CF4_3.00_JC4H10_2.00 (T2K-gas): [vd_MM201</li> <li>3.5_PP] Ar_95_CF4_3_JC4H10_2.200 (T2K-gas): [vd_MM201</li> <li>Ar_95.00_CF4_3.00_JC4H10_2.200 (T2K-gas): [vd_MM201</li> <li>Ar_95.00_CF4_3.00_JC4H10_2.00 (T2K-gas): [vd_MM201</li> <li>J1] T2K-gas measurement, H2O &lt; 10 ppm, 02 &lt; 1 ppm</li> </ul>                                                               |
| rker Sizi<br>Iol Data<br>80<br>70<br>60         |                                       |                                       |               |                                        |                   | y-axis Variable                |                                       |           | Linear<br>y-axis Type | <ul> <li>Ar_95.00_CF4_3.00_JC4H10_2.00 (T2K-gas): [magboltz</li> <li>11.7] T2Kgas-H20</li> <li>Ar_95.00_CF4_3.00_JC4H10_2.00 (T2K-gas): [vd_MM201</li> <li>3.5 PPJ Ar 95_CF4_3.02H10_2 mostrement, Chamber</li> <li>B_ B = 07_H20 &lt; 5 ppm, 02 &lt; 1 ppm</li> <li>Ar_95.00_CF4_3.00_CF4H10_2.00 (T2K-gas): [vd_MM201</li> <li>3.1] T2K-gas measurement, H20 &lt; 10 ppm, 02 &lt; 1 ppm</li> <li>c. b</li> </ul>                                                                  |
| tker Size<br>of Data<br>80<br>70<br>60          |                                       |                                       |               |                                        |                   | y-axis Variable<br>v_z [µm/ns] |                                       |           | Linear<br>y-axis Type | <ul> <li>Ar_95.00_CF4_3.00_JC4H10_2.00 (T2K-gas): [magboltz</li> <li>11.7] T2Kgas-H2O</li> <li>Ar_95.00_CF4_3.00_JC4H10_2.00 (T2K-gas): [vd_MM201</li> <li>3.5_PP] Ar_95_CF4_3_JC4H10_2.200 (T2K-gas): [vd_MM201</li> <li>Ar_95.00_CF4_3.00_JC4H10_2.200 (T2K-gas): [vd_MM201</li> <li>Ar_95.00_CF4_3.00_JC4H10_2.00 (T2K-gas): [vd_MM201</li> <li>J1] T2K-gas measurement, H2O &lt; 10 ppm, 02 &lt; 1 ppm</li> </ul>                                                               |
| ker Sizi<br>ot Data<br>80<br>70<br>60           |                                       |                                       |               | •••••                                  |                   | y-axis Variable<br>v_z [µm/ns] | •••••••                               |           | Linear<br>y-axis Type | <ul> <li>Ar. 95.00_CF4_3.00_JC4H10_2.00 (T2K-gas): [magboltz<br/>11.7] T2Kgas-H20</li> <li>Ar. 95.00_CF4_3.00_JC4H10_2.00 (T2K-gas): [vd_MM201</li> <li>3.5 PJ Ar 95_CF4_3.04H10_2.100 strement, Chamber<br/>B, B = 07_H20 &lt; 5 ppm, 02 &lt; 1 ppm</li> <li>Ar. 95.00_CF4_3.00_UC4H10_2.00 (T2K-gas): [vd_MM201</li> <li>3.1] T2K-gas measurement, H20 &lt; 10 ppm, 02 &lt; 1 ppm<br/>, Cn. B</li> <li>Ar_90.00_CH4_1.00_(P10): [magboltz 11.9] Ar-CH4-H</li> <li>PGMC</li> </ul> |
| arker Sizo<br>)<br>Plot Data                    |                                       |                                       |               |                                        |                   | y-axis Variable<br>v_z [µm/ns] | · · · · · · · · · · · · · · · · · · · |           | Linear<br>y-axis Type | <ul> <li>Ar. 95.00_CF4_3.00_JC4H10_2.00 (T2K-gas): [magboltz<br/>11.7] T2Kgas-H20</li> <li>Ar. 95.00_CF4_3.00_JC4H10_2.00 (T2K-gas): [vd_MM201</li> <li>3.5 PJ Ar 95_CF4_3.04H10_2.100 strement, Chamber<br/>B, B = 07_H20 &lt; 5 ppm, 02 &lt; 1 ppm</li> <li>Ar. 95.00_CF4_3.00_UC4H10_2.00 (T2K-gas): [vd_MM201</li> <li>3.1] T2K-gas measurement, H20 &lt; 10 ppm, 02 &lt; 1 ppm<br/>, Cn. B</li> <li>Ar_90.00_CH4_1.00_(P10): [magboltz 11.9] Ar-CH4-H</li> <li>PGMC</li> </ul> |
| 70<br>60                                        |                                       |                                       |               | •••••••••••••••••••••••••••••••••••••• |                   | y-axis Variable<br>v_z [µm/ns] |                                       |           | Linear<br>y-axis Type | <ul> <li>Ar. 95.00_CF4_3.00_JC4H10_2.00 (T2K-gas): [magboltz<br/>11.7] T2Kgas-H20</li> <li>Ar. 95.00_CF4_3.00_JC4H10_2.00 (T2K-gas): [vd_MM201</li> <li>3.5 PJ Ar 95_CF4_3.04H10_2.100 strement, Chamber<br/>B, B = 07_H20 &lt; 5 ppm, 02 &lt; 1 ppm</li> <li>Ar. 95.00_CF4_3.00_UC4H10_2.00 (T2K-gas): [vd_MM201</li> <li>3.1] T2K-gas measurement, H20 &lt; 10 ppm, 02 &lt; 1 ppm<br/>, Cn. B</li> <li>Ar_90.00_CH4_1.00_(P10): [magboltz 11.9] Ar-CH4-H</li> <li>PGMC</li> </ul> |
| larker Sizi<br>6<br>Plot Data<br>80<br>70<br>60 |                                       | · · · · · · · · · · · · · · · · · · · |               |                                        |                   | y-axis Variable<br>v_z [µm/ns] | · · · · · · · · · · · · · · · · · · · |           | Linear<br>y-axis Type | <ul> <li>Ar. 95.00_CF4_3.00_JC4H10_2.00 (T2K-gas): [magboltz<br/>11.7] T2Kgas-H20</li> <li>Ar. 95.00_CF4_3.00_JC4H10_2.00 (T2K-gas): [vd_MM201</li> <li>3.5 PJ Ar 95_CF4_3.04H10_2.100 strement, Chamber<br/>B, B = 07_H20 &lt; 5 ppm, 02 &lt; 1 ppm</li> <li>Ar. 95.00_CF4_3.00_UC4H10_2.00 (T2K-gas): [vd_MM201</li> <li>3.1] T2K-gas measurement, H20 &lt; 10 ppm, 02 &lt; 1 ppm<br/>, Cn. B</li> <li>Ar_90.00_CH4_1.00_(P10): [magboltz 11.9] Ar-CH4-H</li> <li>PGMC</li> </ul> |





#### gasDB - features

#### Aachen GasDB

#### Imprint

#### Publisher

Published on behalf of the Rector of RWTH Aachen University.

RWTH Aachen University Templergraben 55 52062 Aachen (street address)

52056 Aachen (mailing address) Phone: +49 241 80 1 Fax: +49 241 80 92312 Email: impressum@nwth-aachen.de

RWTH Aachen University is a public institution represented by the Rector, Univ.-Prof. Dr. rer. nat. Dr. h.c. mult. Ulrich Rüdiger.

Regulatory Authority The Ministry of Culture and Science of the Federal State of North Rhine-Westphalia, Völklinger Straße 49, 40221 Düsseldorf.

Sales Tax Identification Number In accordance with § 27 Sales Tax Law: DE 121689807

#### Content Liability

11

Department Spokesperson: Prof. Dr. Stefan Roth Phone: +49 241 80 23688 Email: roth@physik.rwth-aachen.de

#### Aachen GasDB

#### Overview

 $\equiv$ 

This database is filled with both simulations and measurements. At the moment, only simulation runs performed with MagBoltz, configured and run through Garfield++ on our local computing cluster, are available. The corresponding MagBoltz versions are given within the run names of the simulations. Measurements are done in-house with various detectors of the Gas Monitoring Chamber type (T2K-style GMC and HPGMC). Some data was imported from publications, see the run names for the original sources.

#### Usage

The workflow is from left to right:

- 1. Select the desired gases one by one from the dropdown list, then click the "Submit Gases" button. • Uncheck "Strict" if additional gases are allowed in the mixture, as available.
- 2. Select a specific mixture from the dropdown list, then click the "Submit Mixture" button.
  - $\circ\,$  You can type in the field to filter the mixtures and only display those which match your input.
- 3. Select a run from the dropdown list, then click the "Add Run to List" button to add it to your plotting and download list.

By default, no range restrictions are applied to E, p, or B. If desired, these have to be set before submitting the gas mixture.

Runs on the runs list can be downloaded. Error bars displayed in the plots correspond to the total errors, but exported data distinguishes between statistical and systematic errors. The exported data is in human readable format and can be read into Python with our example project example.py.

For online plotting, a number of options are available, most of which are self-explanatory. Density scaling corrections for comparing electron swarm parameters at different pressures or temperatures are a useful preselection possibility, since simulation runs can contain scans in the gas density. More details on density corrections can be found under Density Scaling.

#### **Density Scaling**

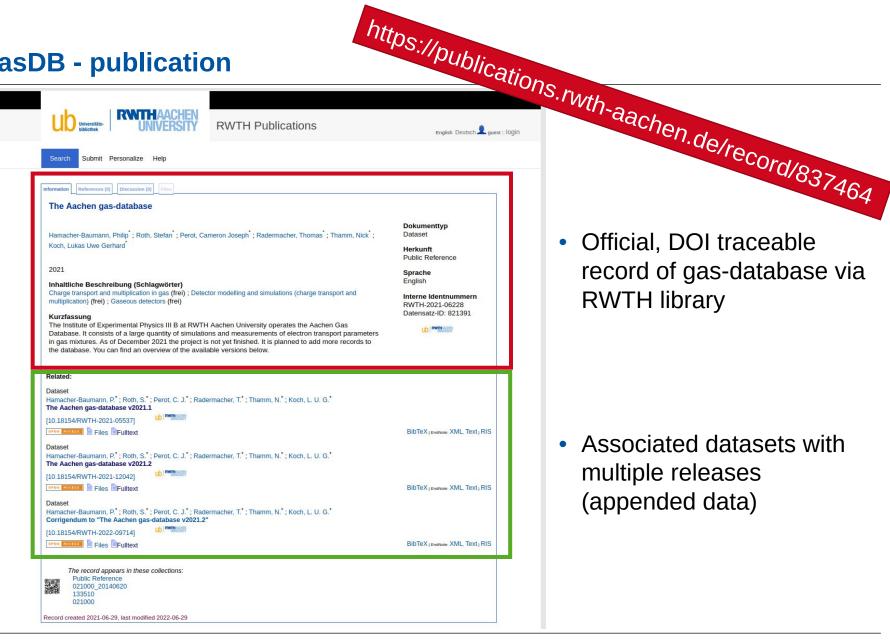
For a given gas mixture, all swarm parameters depend in one way or another on the gas density. Given sufficient distance from phase boundaries of the mixture components, the ideal gas law can be used to factor in the change in gas density:

pV = nRT





 $\equiv$ 


#### gasDB - features

- Web-Interface
  - For quick comparisons
- .csv data-download
  - Including python-parsing example script
- Introductory information on gas-parameters / simulation
  - What exactly is provided and how does T/p-scaling work
- Citation information
  - Bibtex format
- Imprint
  - For legal reasons. Adjusted RWTH-version
- Contact information
  - For questions or requests for additional datasets





#### gasDB - publication



Official, DOI traceable • record of gas-database via **RWTH** library

 Associated datasets with multiple releases (appended data)





#### gasDB - data release

|                                                     | bibliothek UNIVERSITY                                                                                                                                                                                                                                                                                                                                                        | RWTH Publications                                                                                                                                         |                                                                                          | English Deutsch                                                 |
|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| Searc                                               | Submit Personalize Help                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                           |                                                                                          |                                                                 |
| Information                                         | References (0) Discussion (0) Files                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                           |                                                                                          |                                                                 |
| The                                                 | achen gas-database v2021.1                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                           | - F                                                                                      | OpenAccess:                                                     |
|                                                     | her-Baumann, Philip ; Roth, Stefan ; Perot, Cam<br>ukas Uwe Gerhard                                                                                                                                                                                                                                                                                                          | eron Joseph <sup>*</sup> ; Radermacher, Thoma                                                                                                             | s <sup>°</sup> ; Thamm, Nick <sup>°</sup> ;                                              | B SQL<br>PDF<br>(additional files)<br>External link:            |
| 2021                                                |                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                           |                                                                                          | Dokumenttyp                                                     |
| Onlin                                               |                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                           |                                                                                          | Dataset                                                         |
| URL:<br>URL:                                        | 0.18154/RWTH-2021-05537<br>ttps://publications.rwth-aachen.de/record/820318/<br>ttps://publications.rwth-aachen.de/record/820318/                                                                                                                                                                                                                                            | ffiles/Aachen_gas-database_v2021.1<br>ffiles/gasdb_manual.pdf                                                                                             | sql                                                                                      | Sprache<br>English                                              |
|                                                     | ttps://wiki-3ab.physik.rwth-aachen.de/gasdb/                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                           |                                                                                          | Interne Identnummern<br>RWTH-2021-05537<br>Datensatz-ID: 820318 |
|                                                     | ntungen<br>ehrstuhl für Experimentalphysik III B (133510)                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                           | <b>I</b>                                                                                 | IN THE OWNER                                                    |
| Inhalt<br>Charg<br>(charg                           | iche Beschreibung (Schlagwörter)<br>transport and multiplication in gas (frei) ; Gaseou<br>transport and multiplication) (frei)<br>ssung                                                                                                                                                                                                                                     | us detectors (frei) ; Detector modellin                                                                                                                   | g and simulations                                                                        |                                                                 |
| simula<br>comp<br>Curre<br>The C<br>the co<br>accon | 2X-style Gas Monitoring Chambers and a High<br>ion data runs were performed with MagBoltz,<br>ting cluster. Some data was imported from pub<br>by, the data can be used in two different ways:<br>air of Experimental Physics III B provides a we<br>nplete database can be downloaded from this<br>parving pdf. This version v2021.1 was publish<br>oject is still ongoing. | configured and run through Garfiel<br>lications, see the run names for th<br>eb frontend, available at the link at<br>page and used locally. Instructions | d++ on our local<br>e original sources.<br>love. Alternatively,<br>s can be found in the |                                                                 |
| Relate                                              |                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                           |                                                                                          |                                                                 |
| Datase<br>Hamac<br>The Aa                           | er-Baumann, P.* ; Roth, S.* ; Perot, C. J.* ; Raderr<br>hen gas-database                                                                                                                                                                                                                                                                                                     | macher, T.* ; Thamm, N.* ; Koch, L. U                                                                                                                     | . G.*                                                                                    |                                                                 |
| @                                                   | 0 00                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                           |                                                                                          | BibTeX   EndNote: XML, Text   F                                 |
|                                                     | he record appears in these collections:<br>Faculty of Mathematics, Computer Science and I<br>Document types > Other document types<br>Research data > Datasets<br>Public records<br>Public records<br>Public records                                                                                                                                                         | Natural Sciences (Fac.1) > Depart                                                                                                                         | ment of Physics                                                                          |                                                                 |
|                                                     | 133510                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                           |                                                                                          |                                                                 |
|                                                     | 133510<br>eated 2021-06-09, last modified 2021-07-03                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                           |                                                                                          |                                                                 |

- Database release accessible via individual DOI
  - Provides dataset, "manual" for dataset and citation information





- Discussion about database in WG3 for the DRD1 proposal
- Common objective D3.1.1 of WG3
- Proposal to discuss a future common database at this RD51 CM

| Scientific | Proposal | & Rese | earch F | ramework |
|------------|----------|--------|---------|----------|
|------------|----------|--------|---------|----------|

v1.3

| Reference | Description                                                                                                            | Common Objective |
|-----------|------------------------------------------------------------------------------------------------------------------------|------------------|
| D3.1.1    | Gas properties: drift velocity, diffu-<br>sion for e- and ions, gain measurements,<br>light emission, attachment, etc. |                  |





### **Options**

16

- Use database as is
  - Add external measurements and simulations on specific request (with limited service)
- Host and maintain database in a common effort
   within WG3 "Gas and Material Studies" of DRD1
- Take the database as "inspiration" for a future tool with extended capabilities
  - There are many old gas databases, which could be imported
  - CERN tool Zenodo could be used to provide datasets

# In case of interest, please contact us! roth@physik.rwth-aachen.de





## Thank you!





## Backup





#### Conclusion

- Aachen gas database is a useful tool for developing and operating gaseous detectors
- Results are traceable and publicly available
- Database is easily extendable and published results could be imported
- Ongoing work on adding more results and new measurement techniques





#### **Gas Monitoring System - Limitations**



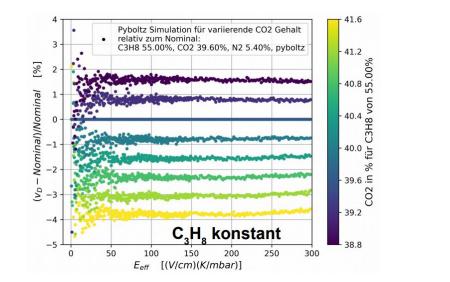
56.0

55.5 %09.6E L

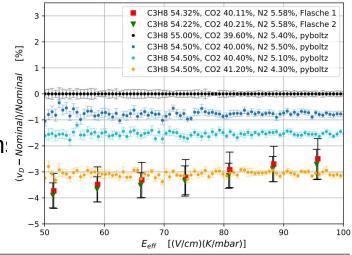
VON

bei

%


.⊆

54.5 0


54.0

- 53.5 D

53.0



- Reconstructing impurities via simulation
- VD mostly sensitive to percentage of alkanes
- No exact match between measurement/simulation:
- --> Probably detector effect



CO, konstant

200

250

300

Pyboltz Simulationen für variierende C3H8 Gehalt

C3H8 55.00%, CO2 39.60%, N2 5.40%, pyboltz

150

[(V/cm)(K/mbar)]

relativ zum Nominal:

100

Eeff

50



1.00

0.75

0.50

0.25

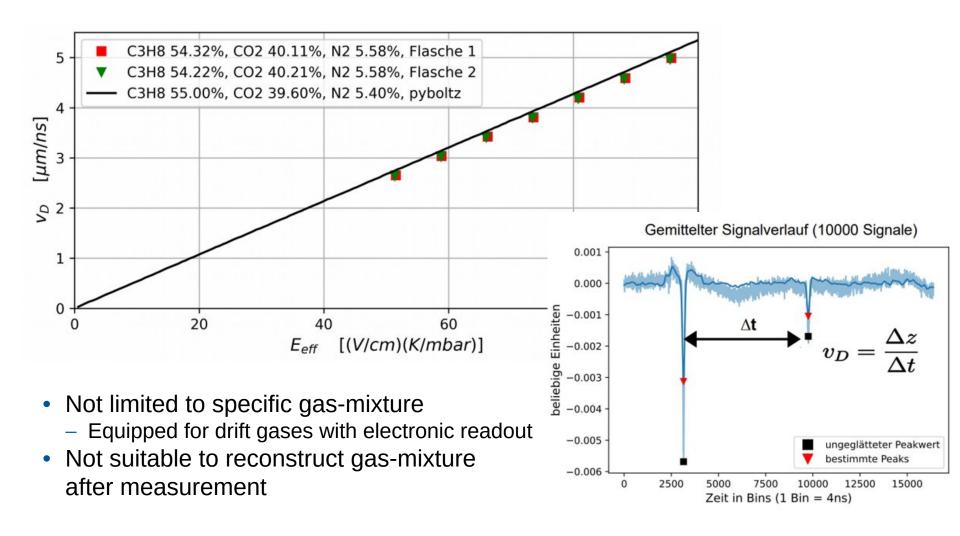
0.00

-0.25

-0.50

-0.75

-1.00


[%]

- Nominal)/Nominal

VD



#### **Gas Monitoring System - Limitations**







#### **Technical aspects**

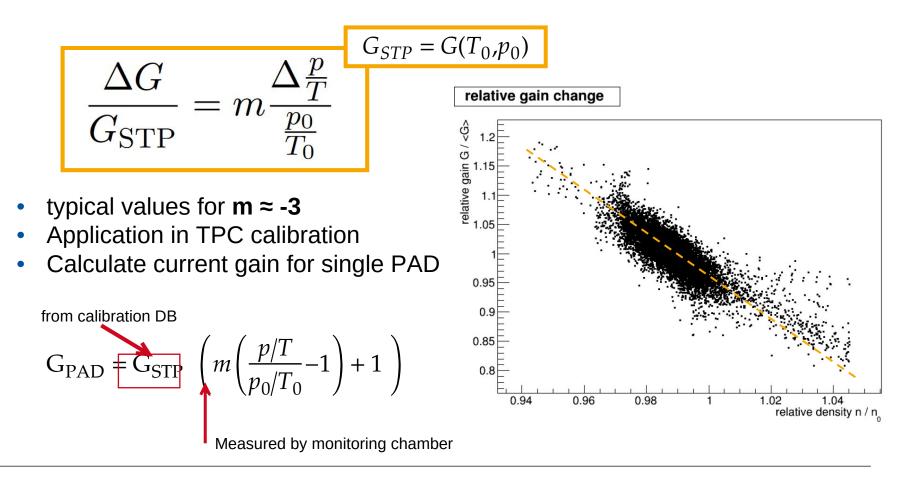
- Data sources
  - Measurements, papers, simulations
- Very lightweight load from outside interactions
  - No powerful server needed
  - Refurbished lab-PC as server
- Interface self-hosted on dedicated lab-server
  - Podman / docker container with Flask / jQuery / Plotly / Bootstrap
- Database hosted on cluster infrastructure
  - Central mysql installation
    - Read-only user for data-access
    - Read/Write user to add data
- Domain hosted by RWTH and forwarded to lab-server
  - RWTH points to Physik-3B-Apache installation (webserver)
  - Webserver reverse proxies to lab server (apache)
    - Managed by physics IT-department





#### **Database structure**

|              |         | runs<br>run_id | int(11)             |             |         |         | gas_mix     | ctures      |            |                  |               |                                |                           |             |
|--------------|---------|----------------|---------------------|-------------|---------|---------|-------------|-------------|------------|------------------|---------------|--------------------------------|---------------------------|-------------|
|              |         |                | int(11)             |             |         |         | mix_id      |             | int(11)    |                  |               |                                |                           |             |
|              |         | mix_id         |                     |             |         |         | name        | varch       | ar(255)    |                  |               |                                | pure_gases                |             |
|              |         | date           | timestamp           |             |         |         | comment     | t           | text       | mint             | ure_compositi | lens                           | gas id                    | int(11      |
|              |         | source_id      | int(11)             |             |         |         | standard    | _gas ti     | nyint(1)   |                  | _             |                                | symbol                    | varchar(255 |
|              |         | comment        | text                |             |         |         |             |             |            | mix_i            |               | int(11)                        | name                      | varchar(255 |
|              |         | public         | tinyint(1)<br>float |             |         |         |             | 1.04        | -          | gas_i<br>fractio |               | int(11)<br>decimal(10,9)       | conversion factor         | double      |
|              |         | E_min          | float               |             |         | 0.0     | data_source |             |            |                  |               | decimal(10,9)<br>decimal(10,9) | conversion factor fluidat | double      |
|              |         | E_max          | float               |             |         |         | source_id   | int(11      |            | molar            | _fraction     | decimal(10'a)                  | fc no                     | tinyint(4   |
|              |         | p_min          | float               |             |         |         | name        | varchar(255 |            |                  |               |                                | fc_string                 | varchar(255 |
|              |         | p_max          | float               |             |         |         | version     | varchar(255 |            |                  |               |                                | flammable                 | tinyint(1   |
|              |         | B_min<br>B_max | float               |             |         |         | comment     | tex         |            |                  |               |                                | CAS                       | varchar(255 |
|              |         | D_max          | noac                |             |         |         | date        | timestam    |            |                  |               |                                | UN                        | int(11      |
| ror_values   |         | parar          | meters              |             |         |         | simulation  | tinyint(1   |            |                  |               |                                | cp_A                      | double      |
| or_values_id | int(11) | paran          | neters id           | int(11)     |         |         |             |             |            |                  | v_d           |                                | cp_B                      | double      |
| ys           | float   | run id         | -                   | int(11)     |         |         |             |             |            |                  | parameters    | id int(11                      | ) cp_C                    | doubl       |
| tat          | float   | error          | values_id           | int(11)     |         |         |             |             |            |                  | v_x           | floa                           | t cp_D                    | doubl       |
| ys           | float   | E              |                     | float       |         |         |             | -           |            |                  | v_x_stat      | floa                           | t cp_E                    | double      |
| tat          | float   | т              |                     | floal       |         |         |             | d_t         |            |                  | v_x_sys       | floa                           | t density                 | double      |
| ys           | float   | р              |                     | float       |         |         |             | par         | ameters_id | int(11)          | v_y           | floa                           | t viscosity               | doubl       |
| itat         | float   | в              |                     | float       |         |         |             | d_t         |            | float            | v_y_stat      | floa                           | t thermal_conductivity    | double      |
| 595          | float   | theta_         | в                   | fioal       |         |         |             | d_t         | stat       | float            | v_y_sys       | fioa                           | t M_mol                   | double      |
| stat         | float   | ne             |                     | smallint(6) |         |         |             | d_t         | sys        | float            | v_z           | floa                           | t a                       | double      |
| ta_B_sys     | float   |                |                     |             |         | d_l     |             |             |            |                  | v_z_stat      | floa                           | t b                       | double      |
| ta_B_stat    | float   |                |                     |             |         |         | meters id   | int(11)     |            |                  | v_z_sys       | floa                           | t TO                      | double      |
|              |         |                |                     |             |         | d_l     |             | float       |            |                  |               |                                | p0                        | double      |
|              |         |                | alpha               |             | n in    | d_l_sta | at          | float       |            |                  |               |                                | Tc                        | double      |
|              |         |                | paramete            | ers_id      | int(11) | d I sy  |             | float       |            |                  |               |                                | pc                        | double      |
|              |         |                | alpha               | -           | float   |         |             |             |            |                  |               |                                | acentric                  | double      |
|              |         |                | alpha_stat          | t.          | float   |         |             |             |            |                  |               |                                | W_alpha                   | floa        |
|              |         |                | alpha_sys           |             | float   |         |             |             |            |                  |               |                                | W_beta                    | floa        |
|              |         |                | eta                 |             | float   |         |             |             |            |                  |               |                                | date                      | timestam    |
|              |         |                | eta_stat            |             | float   |         |             |             |            |                  |               |                                |                           |             |
|              |         |                | eta_sys             |             | float   |         |             |             |            |                  |               |                                |                           |             |



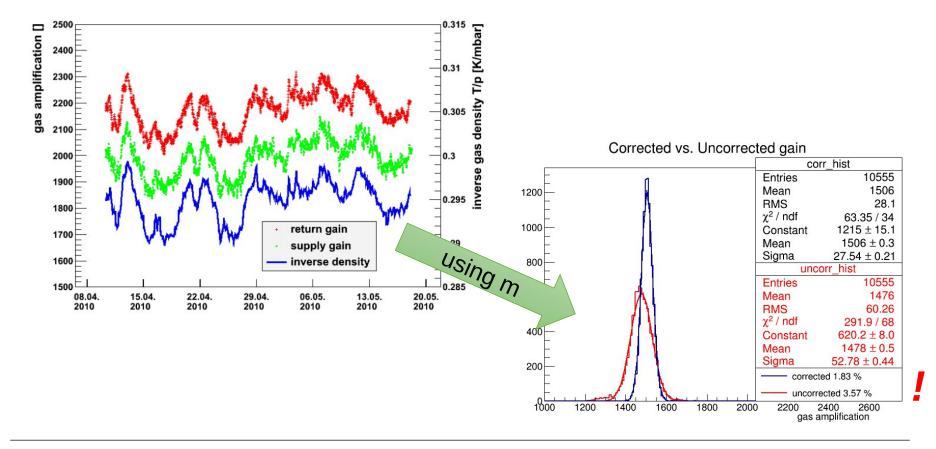





#### **Gain Calibration**

- Correction depends on amplification technology (E-field shape)
  - Pixel / pad detectors use homogenous amplification field (1st order)



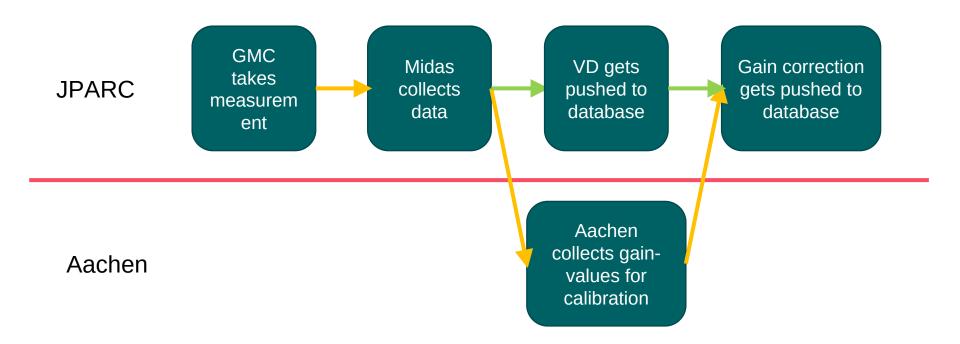





#### **Gas Amplification**

#### Density effects

- Gas amplification changes a lot over the runtime of an experiment
- Caused by density fluctuations (i.e. weather)








#### **Slow-control**

- GMC is technically a digital sensor
  - No external interactions required
  - Measurements are written onto self-contained DAQ-PC







#### Configurations

- Pleged 4 GMCs
- Multiple anode-setups possible
  - ERAMs and Bulk-MMs
- Two suggestions:

| Setup 1                   | Setup 2                   |
|---------------------------|---------------------------|
| Gas-supply (vTPC) – Bulk  | Gas-supply (vTPC) – Bulk  |
| Gas-exhaust (vTPC) – Bulk | Gas-exhaust (vTPC) – Bulk |
| Gas-supply (HAT) – ERAM   | Gas-exhaust (HAT) – Bulk  |
| Gas-exhaust (HAT) – ERAM  | Gas-exhaust (HAT) – ERAM  |





### **Modular Deployment of GMCs**

### Only needs gas connection, power and ethernet link

- 2 GMC crates
  - 2 Gas Monitoring Chambers
  - Pressure sensors
  - Temperature sensors
  - Preamps
- 2 (VME) DAQ and HV crates
  - FADC
  - **Trigger Board**
  - SiPM power supply
  - Anode & cathode power supply
  - Security Loop §
  - Storage slot
  - Computer



### Current setup with 2 crates

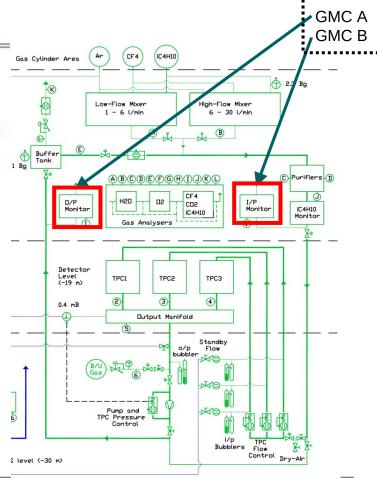


III. Physikalisches Institut B





#### **Current situation**




29

#### Gas system construction: modularity

- <u>Gas systems are made of several modules (building blocks</u>): mixer, pre-distribution, distribution, circulation pump, purifier, humidifier, membrane, liquefier, gas analysis, etc.
- Functional modules are equal between different gas systems, but <u>they can be configured</u> to satisfy the specific needs of all particle detector.
- Implementation: control rack and crates (flexible during installation phase and max modularity for large systems)









#### **Gas-System / installation**

- GMC should have security loop
  - Switch off, when no T2K-gas is present
  - Best: hardware, OK: software
- Ideally seperate gas-stream for GMC
  - Currently 6 l/h
- GMC could profit from auxiliary measurements from gas-system
   E.g.: Water, Oxygen
- For radioactive sources, GMC should be accessible from top
  - If rack-space is rare, GMC could be mounted on drawer rails
    - Flexible tube connection
    - Rack dimensions need to be known!
- GMC has over-pressure valves
  - Is there a need to connect them to gas-loop?



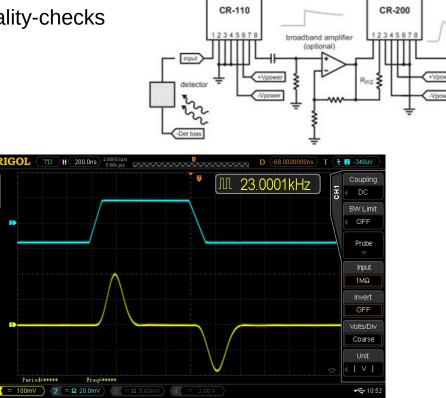




#### **Questions?!**

- Which GMC configuration is desired by the HAT-group?
- Where will the GMCs be installed?
  - Gas-shack or detector-level?
- Is there any public information available for the gas-system?
   Sensors, connections, ...
- Will there be any interaction between gas-system and GMC?
- What is the best meeting, to ask GMC-integration related questions?
- Where should we provide any information on t2k.org?
  - Currently old information hidden in ~5 submenus
    - nd280/tpc/operation/gas/GasMonChambers



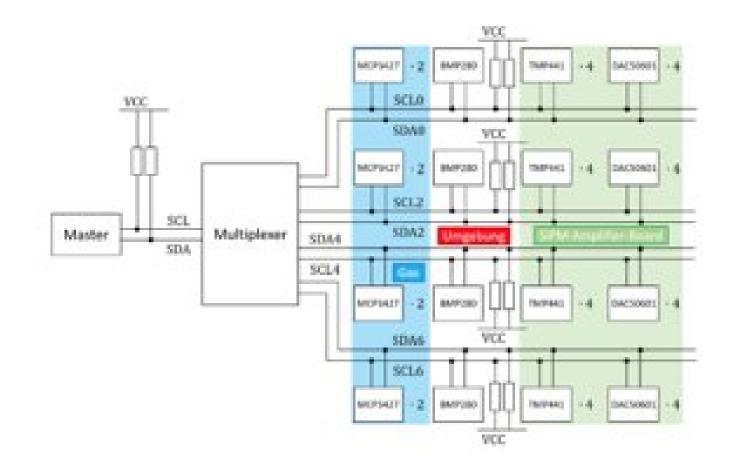



### Amplifier

32

- New amplifier-modules testing going on with custom PCB
  - +/- 12V input (provided by VME backplane)
  - 3 channels (charge sensitive amplifier + guassian shaper)
  - Test input for calibration and functionality-checks





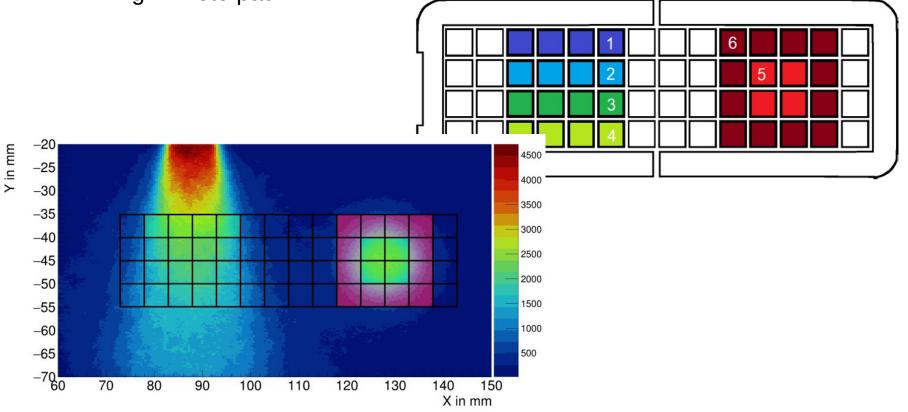

charge preamplifier





shaping amplifier








#### **Micromegas Subdivision**

#### • MM pads are subdivided into groups

- Horizontal bars for drift measurement
- Ring/Pad for gain-measurement
  - Ring -> Veto pad







### **Amplifier / DAQ**

- Combination of charge-sensitive-amplifier and shaper
  - Several combinations possible (various gain-options / shaping times)
- Waveforms are digitized with CAEN VX1720
  - 250MS/s, 12bit FADC

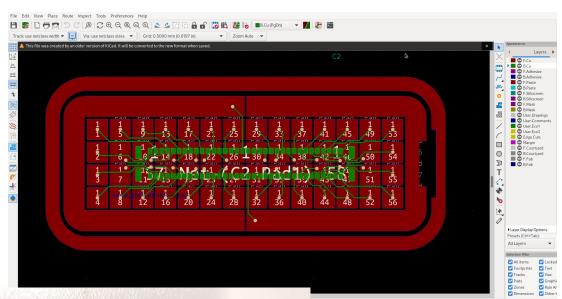
| Specifications                                               | Assume temp =20 °C, V <sub>s</sub> = ± | 6.1V, unloaded output        | Specifications                                                        | Assume temp =20°C, $V_s = \pm 9V$ , ur | nloaded outp               |
|--------------------------------------------------------------|----------------------------------------|------------------------------|-----------------------------------------------------------------------|----------------------------------------|----------------------------|
|                                                              | CR-110-R2                              | units                        |                                                                       | CR-200                                 | units                      |
| Preamplification channels<br>Equivalent noise charge (ENC)*  | 1                                      |                              | amplification channels                                                | 1                                      |                            |
| ENC RMS                                                      | 200<br>0.03                            | electrons<br>femtoCoul.      | polarity<br>operating temperature range                               | non-inverting<br>-40°C to 85°C         |                            |
| Equivalent noise in silicon<br>Equivalent noise in CdZnTe    | 1.7<br>2.4                             | keV (FWHM)<br>keV (FWHM)     | input noise voltage<br>CR-200-50ns                                    | 115                                    | μV RMS                     |
| ENC slope<br>Gain                                            | 4<br>1.4<br>62                         | elect. RMS /pF<br>volts / pC | CR-200-300s<br>CR-200-100ns<br>CR-200-250ns                           | 90<br>60                               | μV RMS<br>μV RMS<br>μV RMS |
| Rise time **                                                 | 7                                      | mV / MeV(Si)<br>ns           | CR-200-500ns<br>CR-200-1µs                                            | 47<br>36                               | μV RMS<br>μV RMS           |
| Decay time constant<br>Unsaturated output swing              | 140<br>-3 to +3                        | μs<br>volts                  | CR-200-2µs<br>CR-200-4µs                                              | 30<br>24                               | μV RMS<br>μV RMS           |
| Maximum charge detectable per event                          | 1.3 x10 <sup>7</sup><br>2.1            | electrons<br>pC              | CR-200-8µs<br>output impedance                                        | 22<br><5                               | μV RMS<br>Ω                |
| Power supply voltage (V <sub>s</sub> )<br>maximum<br>minimum | $V_s = \pm 13$<br>$V_s = \pm 6$        | volts                        | output offset<br>output temperature coefficient                       | -40 to +40<br>-60 to +60               | mV<br>μV / ℃               |
| Power supply current (pos)<br>(neg)                          | 7.5<br>3.5                             | mA<br>mA                     | power supply voltage (V <sub>s</sub> )<br>absolute maximum<br>minimum | $V_s = \pm 13$<br>$V_s = \pm 5$        | volts<br>volts             |
| Power dissipation<br>Operating temperature                   | 70<br>-40 to +85                       | mW<br>℃                      | quiescent power supply current                                        | v <sub>s</sub> = ± 5<br>7              | mA                         |
| Output offset                                                | +0.2 to -0.2                           | volts                        | maximum output current<br>maximum output swing*                       | 20<br>V <sub>S</sub> -0.5              | mA<br>volts                |
| Output impedance                                             | 50                                     | ohms                         | and a strate strate                                                   | .5 0.0                                 | 10110                      |

\* for CR-200-50ns maximum output is +/-6V or V<sub>s</sub>-0.5, whichever is less.



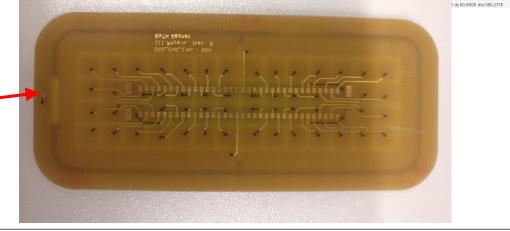


#### **High voltage**


- ISEG VME modules (same as old GMCs)
  - ISEG VHS 4005p / 500V (ERAM)
  - ISEG VHS 4060n / -6kV (Drift)
- Ripple and noise
  - f>10Hz: <10mVpp</p>
  - f>1kHz: <2-3mVpp</p>
- By now, no filter on MM installed
   DLC more susceptible to noise?
- Connection via round solder-point

| SPECIFICATIONS                                                       | VHS Common-GND (CG)                                                                                                           |  |  |  |  |
|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Polarity                                                             | Factory fixed, positive or negative                                                                                           |  |  |  |  |
| Ripple and noise (f > 10 Hz)                                         | < 10 mV <sub>p·p</sub>                                                                                                        |  |  |  |  |
| Ripple and noise (f > 1 kHz)                                         | < 2 - 3 mV <sub>PP</sub>                                                                                                      |  |  |  |  |
| Stability                                                            |                                                                                                                               |  |  |  |  |
| Stability – [ΔV <sub>out</sub> vs. ΔV <sub>in</sub> ]                | < 1 • 10 <sup>-4</sup> • V <sub>nom</sub>                                                                                     |  |  |  |  |
| Stability – $[\Delta V_{out} vs. \Delta R_{load}]$                   | < 5 • 10 <sup>-4</sup> • V <sub>nom</sub>                                                                                     |  |  |  |  |
| Temperature coefficient voltage measurement                          | < 50 ppm / K                                                                                                                  |  |  |  |  |
| Temperature coefficient current measurement                          | < 50 ppm / K                                                                                                                  |  |  |  |  |
| Resolution – The resolution of measurable value                      | s depends on the settings of the sampling rate and the digital filter!                                                        |  |  |  |  |
| Resolution voltage setting                                           | < 2 • 10 <sup>-6</sup> • V <sub>nom</sub>                                                                                     |  |  |  |  |
| Resolution current setting (trip)                                    | < 2 • 10 <sup>4</sup> • I <sub>nom</sub>                                                                                      |  |  |  |  |
| Resolution voltage measurement (1                                    | < 2 • 10 <sup>-6</sup> • V <sub>nom</sub>                                                                                     |  |  |  |  |
| Resolution current measurement $[I_{out} > 20 \mu A]$ <sup>(1)</sup> | < 2 • 10 <sup>6</sup> • I <sub>nom</sub>                                                                                      |  |  |  |  |
| Measurement Accuracy - The measurement acc                           | curacy is guaranteed in the range $1\% \cdot V_{nom} < V_{out} < V_{nom}$ and for 1 year                                      |  |  |  |  |
| Accuracy voltage measurement                                         | ± (0.01 % • V <sub>out</sub> + 0.02 % • V <sub>nom</sub> )                                                                    |  |  |  |  |
| Accuracy current measurement [l <sub>out</sub> > 20 μA]              | ± (0.02 % • I <sub>out</sub> + 0.02 % • I <sub>nom</sub> )                                                                    |  |  |  |  |
| Sample rates ADC (SPS)                                               | 5, 10, 25, 50, 60, 100, <b>500</b> <sup>(2</sup>                                                                              |  |  |  |  |
| Digital filter averages                                              | 1, 16, <b>64</b> <sup>12</sup> , 256, 512, 1024                                                                               |  |  |  |  |
| Voltage ramp up / down                                               | 1 • 10 <sup>-6</sup> • V <sub>nom</sub> /s to 0.2 • V <sub>nom</sub> / s                                                      |  |  |  |  |
| Hardware limits                                                      | Potentiometer per module [V <sub>max</sub> / I <sub>max</sub> ]                                                               |  |  |  |  |
| Limit monitor volt                                                   | 2.5 V                                                                                                                         |  |  |  |  |
| Digital interface                                                    | VMEbus                                                                                                                        |  |  |  |  |
| Protection                                                           | Safety loop, over load and short circuit protected<br>(ATTENTION: there is only one short circuit or arc per second allowed!) |  |  |  |  |
| HV connector                                                         | Redel 51pole   SHV                                                                                                            |  |  |  |  |
| System connector                                                     | 96-pin connector according to DIN 41612 (MMS HV compatible)                                                                   |  |  |  |  |
| Safety loop connector                                                | Lemo 2pole                                                                                                                    |  |  |  |  |
| Limit monitor connector                                              | Lemo 2pole                                                                                                                    |  |  |  |  |
| Case                                                                 | 6U VME cassette (single and double width )                                                                                    |  |  |  |  |
| Dimensions – L/W/H                                                   | 164mm 4HP,(8HP) / 6U VME cassette,                                                                                            |  |  |  |  |
| Operating temperature                                                | 0 – 40 °C                                                                                                                     |  |  |  |  |
| Storage temperature                                                  | -20 – 60 °C                                                                                                                   |  |  |  |  |
| Humidity                                                             | 20 – 80 %, not condensing                                                                                                     |  |  |  |  |






- Pad dimensions:
  - Pitch: 5mm
  - Distance between pads: 0.5mm
- Larger veto-pads around segmented plane
- HV-ring around all pads
- Corner radius: 10mm

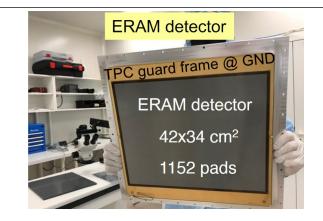


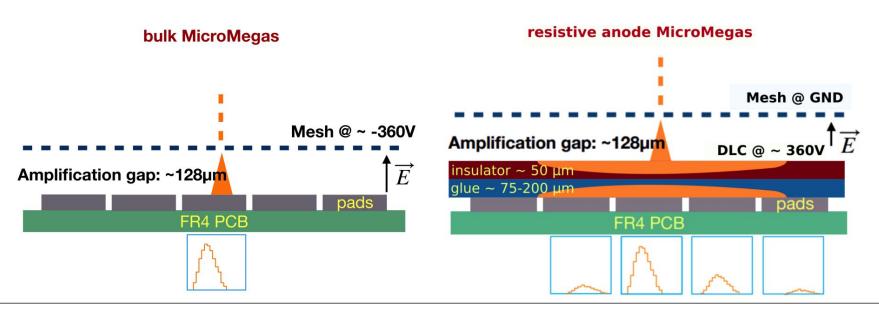
00 dist 180.2776 grid X 0.5000 Y 0.5000 mm

HV connection



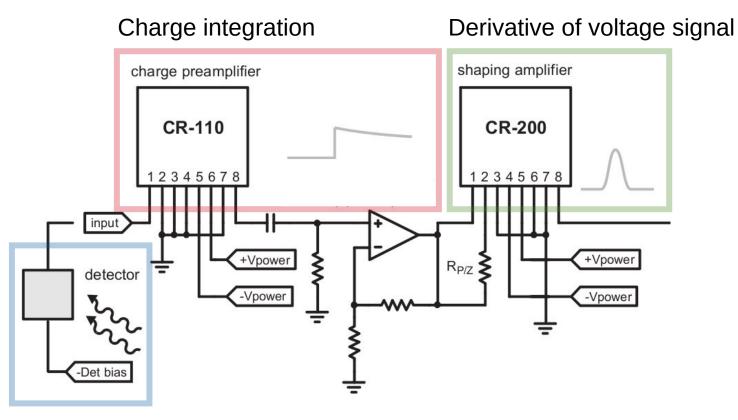






#### Anode (Micromegas / ERAM)

- Large TPCs are changing technology
   Bulk micromegas vs resistive micromegas (ERAM)
- Resistive layer introduces charge-spread
  - DLC foil acts as intrinsic sparking protection
  - Charge-spread reduces number of required pads
  - Mesh @ GND

38


• Equipotential plane for whole detector.



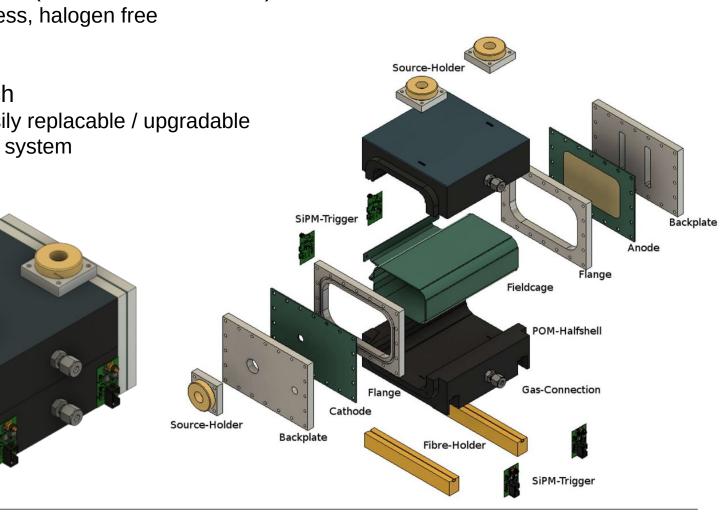








Signal of several 1000 electrons






#### **General idea for GMCs**

- Choice of materials (PEEK, POM, G10, ...)
  - Radiation hardness, halogen free
  - Low outgassing
- Modular approach

- Make anode easily replacable / upgradable
- Rack-mountable system







#### Interesting databases / material information

### Starting points (!) for "material selections"?

- <u>https://outgassing.nasa.gov/outgassing-data-table</u>
- <u>https://www.ensingerplastics.com/en/plastic-material-selection/radiation-resistant</u>
- <u>https://www.klebeprofi.net/klebe-anleitungen/</u>
- <u>https://www.matweb.com/</u>
- <u>https://www.nist.gov/srd/physics</u>
- <u>http://cyclotron.mit.edu/drift/www/</u>
- <u>https://ncsx.pppl.gov/NCSX\_Engineering/Materials/VacuumMaterials/Outgassing\_</u> <u>Data.pdf</u>
- Database of databases would be really useful!





### Setup at CERN





