FastIC Top Board V1-2 37-39003-e1-0007

Fast-timing and high-granularity readout of MPGDs:

ce reversel

FastIC and Timepix4

9339

Lucian Scharenberg

on behalf of the CERN EP-DT-DD GDD team

RD51 Collaboration Meeting (the last one) 06 December 2023

EXTCLKD

ExiTrigger

HU. Ext

HU. SI PI

Outline

FastIC: Multi-channel fast-timing readout

ASIC properties

Working principle/block diagram

Currently used readout/control system

Experimental set-ups and/or first results

Timepix4: High-granularity readout

06 December 2023

FastlC: Multi-channel fast-timing readout

Basic properties

- Developed by University of Barcelona and CERN for generic fast-timing applications
- Positive or negative input polarity sensors with intrinsic amplification
- 8 readout channels
 - Power consumption: ~ 9 mW/ch
 - Dynamic range: 5 μA to 20 mA input current
- ~ 2 MHz rate capability per channel with time and energy information
- ~ 50 MHz rate capability per channel with time information only

16-channel front-end board with 2 ASICs mounted

Block diagram

Energy branch with TIA, 25 ns (or 5 ns) PT shaper, peak-detection and hold, and amplitude to time conversion

06 December 2023

FastIC FPGA board

- Front-end board mounted on FPGA board
- FPGA board provides additional outputs + USB interface to computer
- Although TDC on FPGA board available, measure binary FastIC output with oscilloscope
- Small interface board to send Picosec signals into FastIC
- Access via HRS connector

L. Scharenberg @ RD51 Collaboration Meeting

Experimental set-up

Two detectors read out at test beams at H4 with Picosec MicroMegas:

- Single channel Picosec
 - 150 µm pre-amplification
 - Resisitive anode with 82 MOhm/sq
 - Csl photocathode
- 10 x 10 multi-pad detector
 - 180 µm pre-amplification
 - 1 cm² pads with metallised anode
 - DLC photocathode

Beam telescope with

- MCP-PMT as time reference and trigger
- 3 COMPASS-like triple-GEM detectors for position information with APV25/SRS readout

Results: Charge processing

Main point of investigation: how will the 25 ns PT shaper handle the typical Picosec MM waveform?

 \rightarrow Investigate dependence of shaper peak amplitude and energy pulse width on electron peak charge

Results: Charge processing

Main point of investigation: how will the 25 ns PT shaper handle the typical Picosec MM waveform?

Two types of linear fits: 'full' linear fit and 'restricted' fit with intercept forced to go through origin \rightarrow Linear relation confirmed. **Charge information well processed for time walk correction.**

Results: Time walk

- Fit sigmoid function to MCP-PMT reference timing pulse and Picosec waveform
- Signal Arrival Time (SAT) defined as 20 % value of the fit (effectively a software CFD)
- Same for binary FastIC signal: **beware of leading edge discriminator within the FastIC**
- ~1 ns time walk with FastIC: 'sampling' the rise time of the Picosec electron peak

Results: Time resolution and efficiency

L. Scharenberg @ RD51 Collaboration Meeting

Results: Multi-channel readout

- Multi-channel readout: pads 15, 16, 25 and 26 of multi-pad detector
- Reconstruct the pads individually
- Just to demonstrate that we can read out multiple channels at once
- Issues in the signal transmission (badly made adapter cables) decreased the time resolution
- Pads 15, 16 and 25 show similar response (<10% variation), as expected from previous studies [Marta's presentation from yesterday]

Timepix4: High-granularity readout

Basic properties

- Developed within Medipix4 collaboration at CERN as large-area hybrid pixel ASIC
 → Use bump-bond pads for Si-sensor instead as anode pads for charge collection
- 448 x 512 square pixels with 55 µm pitch
 - 2.47 x 3.0 cm² active area = 7.4 cm²
 - 229 376 channels
 - Power consumption limited to ~ 1 W/cm², typically 0.2 W/cm²
 - Bipolar front-end, optimised for negative charge
- 4-side tileable \rightarrow no dead area for multi-chip readout anode

Timepix4 on SPIDR4 carrier [X. Llopart @ iWoRID 2021]

- Two readout modes
 - Data-driven RO mode with high rate-capability (up to 3.6 MHz/mm²)
 - Frame-based RO mode (up to 5 GHz/mm² count rate)

Block diagram and digitisation

- High gain mode with 3 fF feedback capacitor (gain ~225 mV/fC)
- Low gain mode with 6 fF • feedback capacitor (gain ~125 mV/fC)
- Dynamic range ~500 e- (0.1 fC) to ~250 ke- (40 fC) input charge
- ~10 ns peaking time
- Particle time of arrival (ToA) information with 195 ps time bins
- Charge information via time over threshold (ToT) with ~700 eresolution (FWHM)

Disc Out

Experimental set-up

- Readout system: Speedy Pixel Detector Readout (SPIDR4) → arrived today (one hour ago)
- Various kinds of detectors planned
 - Triple-GEM as <u>Timepix GEM TPC</u> <u>from University of Bonn</u> or <u>GEMPix from F. Murtas</u>
 - a) directly on SPIDR4 carrier (similar to T. Schiffer's <u>GridPix3</u> detector for SPIDR)
 - b) 5 x 5 cm² triple-GEM detector
 - µRWELL with embedded Timepix4 (inspired by Magnus Mager's presentation at MPGD 2022)
- Foreseen application (near future): low-material budget, high-granularity TPC

Small 7 cm² active area detector on SPIDR4 carrier [Thanks to Jerome Alozy and Miranda van Stenis]

Timepix4 PCB for 5 x 5 cm² GEMs [Courtesy of William Billereau]

Summary and references

FastIC: multi-channel readout for fast-timing applications

- Successful readout of Picosec MicroMegas detectors
- Despite timing at threshold resulting in large time walk for Picosec signals (~ 1 ns), time resolutions of around 50 ps can be achieved
- With MCP-PMTs (less time walk) time resolutions of ~20 to 25 ps achieved (not shown here)
- FastIC+ in the future with integrated TDC for fully digital output

Timepix4: high-granularity readout of MPGDs

- ~ 7 cm² active area with 230k square pixels providing simultaneously charge (700 eresolution), time information (200 ps resolution) and high-granularity position information
- Project just at the beginning
- Readout of triple-GEM and $\mu RWELL$ intended
- Near-future application: low material budget TPC

References

FastIC: multi-channel readout for fast-timing applications

- S. Gomez et al., J. Instrum. **17** (2022) C05027: <u>https://doi.org/10.1088/1748-0221/17/05/C05027</u>
- D. Sanchez et al., IEEE Trans. Radiat. Plasma Med. Sci. 6 (2022) 51: <u>https://doi.org/10.1109/TRPMS.2021.3066426</u>
- Documentation: <u>https://icc-ub.gitlab.io/instrumentation/clues/fastic_doc/index.html</u>

• Timepix4: high-granularity readout of MPGDs

- X. Llopart et al., J. Instrum. 17 (2022) C01044: <u>https://doi.org/10.1088/1748-0221/17/01/C01044</u>
- Documentation (only for Medipix4 members): <u>https://timepix4.web.cern.ch/timepix4/</u>
- SPIDR4 documentation: <u>https://spidr4.nikhef.nl/</u>

Thanks to J. Alozy, R. Ballabriga, M. Campbell and M. Piller (CERN EP-ESE-ME), S. Gomez and D. Gascon (University of Barcelona), M. Fransen, M. van Beuzekom, B. van der Heijde and J. Visser (Nikhef), R. de Oliveira and A. Rodrigues (CERN EP-DT-EF), M. Mager (EP-AID-DT) and W. Billereau (CERN BE-CEM-EPR) for their support.

06 December 2023

Picosec author list and collaborators on FastIC

L. Scharenberg^{a,*}, J. Alozy^a, Y. Angelis^b, S. Aune^c, R. Ballabriga^a, J. Bortfeldt^d, F. Brunbauer^a, M. Campbell^a, E. Chatzianagnostou^b, K. Dehmelt^e, D. Desforge^c, G. Fanourakis^f, J. M. Fernandez-Tenllado^{a,g}, K. J. Flöthner^{a,h}, M. Gallinaroⁱ, F. Garcia^j, P. Garg^k, D. Gascon^g, I. Giomataris^c, K. Gnanvo^e, S. Gomez^{l,g}, T. Gustavsson^m, F. J. Iguaz^{c,1}, D. Janssens^{a,n,o}, A. Kallitsopoulou^c, M. Kovacic^p, P. Legou^c, M. Lisowska^{a,q}, J. Liu^r, M. Lupberger^{h,s}, S. Malace^e, R. Manera^g, I. Maniatis^{a,b,2}, A. Mariscal^g, J. Mauricio^g, Y. Meng^r, H. Muller^{a,s}, E. Oliveri^a, G. Orlandini^{a,t}, T. Papaevangelou^c, E. Picatoste^g, M. Piller^{a,u}, M. Pomorski^v, L. Ropelewski^a, D. Sampsonidis^{b,w}, A. Sanuy^g, T. Schneider^a, E. Scorsone^v, L. Sohl^{c,3}, M. van Stenis^a, Y. Tsipolitis^x, S.E. Tzamarias^{b,w}, A. Utrobicic^y, R. Veenhof^a, X. Wang^r, S. White^z, Z. Zhang^r, Y. Zhou^r

^aEuropean Organization for Nuclear Research (CERN), 1211 Geneva 23, Switzerland ^bDepartment of Physics, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece ^cInstitut de Recherche sur les lois Fondamentales de l'Univers (IRFU, CEA), Université Paris-Saclay, F-91191 Gif-sur-Yvette, France ^dDepartment for Medical Physics, Ludwig Maximilian University of Munich, Am Coulombwall 1, 85748 Garching, Germany ^e Thomas Jefferson National Accelerator Facility (Jefferson Lab), 12000 Jefferson Avenue, Newport News, VA 23606, United States ^fInstitute of Nuclear and Particle Physics, NCSR "Demokritos", P.O. Box 60037, 15310 Agia Paraskevi, Greece ⁹Institute of Cosmos Sciences (ICCUB), University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain ^hHelmholtz-Institut für Strahlen- und Kernphysik, University of Bonn, Nußallee 14-16, 53115 Bonn, Germany ⁱLaboratório de Instrumentação e Física Experimental de Partículas (LIP), Av. Prof. Gama Pinto 2, 1649-003 Lisbon, Portugal ^jHelsinki Institute of Physics, P.O. Box 64, FI-00014 University of Helsinki, Finland ^kDepartment of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794-3800, United States ¹Serra Hunter Fellow, Electronics Department, Polytechnic University of Catalonia (UPC), Eduard Maristany 16, 08019 Barcelona, Spain ^mLaboratoire Interactions, Dynamiques et Lasers (LIDYL, CEA), Université Paris-Saclay, F-91191 Gif-sur-Yvette, France ⁿInter-University Institute For High Energies, Pleinlaan 2, 1050 Brussels, Belgium ^o Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belaium ^pFaculty of Electrical Engineering and Computing, University of Zagreb, Unska 3, 10000 Zagreb, Croatia ^qUniversité Paris-Saclay, F-91191 Gif-sur-Yvette, France ^rState Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China (USTC), Hefei 230026, China ^sPhysikalisches Institut, University of Bonn, Nußallee 12, 53115 Bonn, Germany ^tFriedrich-Alexander-Universität Erlangen-Nürnberg, Schloßplatz 4, 91054 Erlangen, Germany ^uInstitute of Electronics, Graz University of Technology, Inffeldgasse 12/I, 8010 Graz, Austria ^vLaboratory for Integration of Systems and Technology (CEA-LIST), Diamond Sensors Laboratory, CEA Saclay, F-91191 Gif-sur-Yvette, France ^wCenter for Interdisciplinary Research and Innovation (CIRI-AUTH), Thessaloniki 57001, Greece ^xNational Technical University of Athens, 106 82 Athens, Greece ^yRuder Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia ²Department of Physics, University of Virginia, P.O. Box 400714, Charlottesville, VA 22904-4714, United States

> ¹Now at: Synchrotron SOLEIL, L'Orme des Merisiers, Départementale 128, 91190 Saint-Aubin, France. ²Now at: Department of Particle Physics and Astronomy, Weizmann Institute of Science, 234 Herzl Street, P.O. Box 26, Rehovot 76100, Israel. ³Now at: Now at TÜV NORD EnSys GmbH & Co. KG, Germany.

L. Scharenberg @ RD51 Collaboration Meeting