

AGH UNIVERSITY OF SCIENCE AND TECHNOLOGY

ASICs for Calorimeters

Marek Idzik

RD51 WG5 meeting, CERN 6 December 2023

- Introduction
- Examples of readout ASICs for Calorimetry in LHC Upgrades
- Comparison of key parameters
- ASIC R&D in DRD6 (Calorimetry)
- Past Present ASIC comparison
- S-ALTRO, FLAME
- Power and Technology limits
- DRD7 vs DRD1, wish-list, ...

- Readout ASICs for calorimetry have many common specs/requirements/challenges with other detectors:
 - > Energy deposition (Amplitude) measurement
 - Precise timing 4D calorimetry becomes an important requirement
 - High speed data links lower granularity (not always) but more bits per channel
 - Complexity leading to System on Chip (SoC) architecture
 - Very low power per channel, particularly for multi-channel ASICs in high granularity detectors
- Specific requirement due to large input dynamic range:
 - > Amplitude measurement with resolution 10-15 bits

ALFE2+COLUTA readout ASICs for ATLAS Phase-2 LAr Calorimeter Upgrade

- 2 ASICs in 2 CMOS processes
- Only 4/8 channels
- No TDC (time measurement from pulse shape)
- High power consumption

- PA/S ALFE2 ASIC
 - CMOS 130nm
 - 4 channels x 2 gains
 - Bipolar shaping, Tpeak~15ns
 - Power ~150mW/chan
- COLUTA
 - CMOS 65nm
 - 8 channels
 - Sampling 40 MHz
 - Amplitude measurement
 - 15-bit hybrid SAR ADC
 - ENOB ~11.5 bit
 - Power 140mW
 - 10 x 640Mbps link

CATIA+LiTE-DTU readout ASICs for CMS Phase-2 Barrel Calorimer Upgrade

•CATIA ASIC

- CMOS 130nm
- Transimpedance amplifier with 2 gain stages
- •LITE-DTU
 - CMOS 65nm
 - 2 channels
 - Sampling 160 MHz
 - Amplitude measurement
 - 12-bit SAR ADC
 - ENOB ~10.7
 - Power ~10mW
 - Data compression and High speed link 1.28Gbps

- 2 ASICs in 2 CMOS processes
- Only 1/2 channels
- No TDC, very fast sampling (160MSps) to get timing info

Sa R AGH

Sampling fast signals at high resolution Reminder on ADC aperture error

Jitter od sampling clock degrades the ADC ENOB even for "perfect" ADC

HGCROC readout ASIC for CMS Phase-2 Calorimeter Endcap Upgrade

Figure 1. HGCROC3 block diagram with 72 regular channels divided in two paths: data acquisition with memorisation (DAQ) and trigger path.

- One SoC-type ASIC including FE+ADC+TDC in each channel
- Multi-channel (72) ASIC
- Low power consumption

HKROC ASIC for PMs in Hyper-Kamiokande (derived from HGCROC)

- •CMOS 130nm
- •36 channels
- •Waveform digitizer (40MHz) with auto-trigger
- Hit rate 400-1000 kHz/chan averageTime measurement
 - 10-bit TDC 25ps bin
- •Amplitude measurement
 - 10-bit SAR ADC
- High speed links 1.28Gbps
- •Power ~10mW/channel
 - FE ~5.5mW
 - 10-bit 40MSps ADC ~0.7mW
 - 10-bit ToA TDC ~0.5mW@10%

Key features similar to HGCROC but working as waveform digitizer with auto-trigger

Marek Idzik (AGH)

Calorimetry - State of the Art ASICs under development

Chip(s)	Experiment /Detector	CMOS nm	No. Chan.	ADC Fsample / N-bit / power	TDC
HGCROC	CMS/HGCAL ALICE/FoCal-E	130	72	40MHz / 10-bit / 0.7mW + TOT for large signal	Yes, 25ps bin
ALFE2 COLUTA	ATLAS/LArCalo	130 65	4 8	40MHz / 15-bit / 140mW	No, 200ps - ns (OFC)
CATIA + LITE-DTU	CMS/ECAL	130 65	1 2	160MHz / 12-bit / 10mW	No, precise timing from ADC samples

Several other projects for LHC Upgrades are in less advanced stage ...

The idea of signal measurement

- Fast ultra-low power ADC&TDC in each channel
- Fast high-precision ADC and time measurement from pulse shape
- Very fast ADC and timing info inferred from ADC samples Other considerations:
 - SoC multi-channel ASIC (HGCROC) vs FE&ADC few-channel ASICs (ALFE+COLUTA, CATIA+LiTE-DTU)
 - Usage of commercial blocks (ADC in LiTE-DTU)
 - CMOS 130/65nm used presently

DRD6 proposal: Common readout ASICs for calorimeter prototypes (OMEGA + AGH + CEA Saclay)

The idea is to start from HGCROC/HKROC ASICs:

- •Main objective is to reduce power from \sim 15mW to few mW per channel
- Allow better granularity
- •Improve performance in Preamp, Shaper, ADC, TDC, DSP
- Variants for Si, SiPM, LAr
- Implementation of cryogenic operation

S-ALTRO ASIC in CMOS 130nm State of the Art of SoC ASIC - 10 years ago!

P. Aspell, M.De Gaspari, H. Franca, E. Garcia, L. Musa "A Super-Altro 16: A Front-End System on Chip for DS Based Readout of Gasous Detectors", IEEE Trans. On Nucl. Science vol. 60, April 2013 pp. 1289-1295

Marek Idzik (AGH)

FLAME Readout ASIC in CMOS 130nm for forward calorimetry

FLAME is a 32-channel ASIC in CMOS 130nm with analog front-end $(T_{peak} \sim 50ns, switched gain)$, and 10-bit ADC $(f_{sample} = 20MHz)$ in each channel, followed by two fast (5.2Gbps) serialisers and data transmitters

FLAME ASIC in CMOS 130nm Single channel

- Analog front-end comprising:
 - Charge sensitive preamplifier with variable gain:
 - High gain for MIP sensitivity (up to ~ 200 fC)
 - Low gain for shower measurement (up to ~6pC)

Biasing

- Detector capacitance ~20-40pF
- Differential CR-RC shaper with \sim 50ns peaking time for amplitude and time measurement using deconvolution
- Krummenacher feedback
- Internal calibration and pedestal trimDAC
- Power consumption ~1.2mW

- 10-bit SAR ADC in each channel
 - Default sampling rate 20MSps (max. up to 50MSps)
 - DNL, INL < 0.5 LSB
 - ENOB > 9.5
 - Ultra low power consumption
 (~0.7 mW/channel@40 MSps
 - ~0.35mW/channel@20MSps)

FLAME ASIC in CMOS 130nm **Power consumption and contributions**

Average power consumption: 3.13 mW / channel

- Analogue FE
- : 1.25 mW/chan : 0.33 mW/chan
- ADC Digital
- SST driver
- : 0.45 mW/chan • Serialiser : 0.55 mW/chan
 - : 0.55 mW/chan

Total ASIC consumption (32 channels)

- Analogue FE : 40.0 mW : 10.6 mW
- ADC
- Digital ٠
- SST driver
- Total
- : 14.4 mW • Serialiser : 2x 8.8 mW
 - : 2x 8.8 mW
 - : 100 mW

In last decade huge decrease of power consumption, for ADC almost 2 orders of magnitude - mainly due to architecture

Power&Speed vs CMOS process 130/65/28 nm Comparison of fast 10-bit SAR ADCs

CMOS [nm]	Verification	Power@40MHz [uW]	Max fsample [MHz]	Applications in ASICs
130	Fabricated ASIC M. Firlej et al. JINST 18 P11013	680	50	FLAME, HGCROC, HKROC, TOFHIR
65	Fabricated ASIC J. Moroń TWEPP 2019	440	50-60	
65	Fabricated ASIC J. Moroń TWEPP 2019	~550	80-90	lpGBT (analog part)
28	Post-layout simulation	~150 ?	~200 ?	

- 65nm consumes less and is faster than 130nm, but there is not much difference
- if post-layout simulations are reliable (???) there is a big advantage of 28nm, both in power and speed

Cooperation between DRD7 and other DRDs... DRD1 wish-list ?

DRD7 – R&D on Electronics and Data processing should interact and cooperate with other detector DRDs

- Using this opportunity and being one of DRD7.3 conveners
 - mostly focused on DRD7.3 "High Performance TDC and ADC blocks at ultra-low power"

I'd be glad to know your thoughts on possible cooperation and to know the DRD1 wish-list to DRD7.3

If not here you can always contact me by email.

Timing Detectors - State of the Art ASICs under development

Chip	Experiment /Detector	CMOS nm	No. Chan.	TDC / Total power per channel
TOFHIR	CMS/BTL	130	32	TAC+ADC10-bit40MHz, 20ps bin (~30ps) / ~17mW TOT amplitude measurement
ETROC	CMS/ETL	65	16x16	TOA+TOT, ~20ps bin (<50ps) / ~3mW
FastRICH	LHCb/RICH	65	16	CFD, 25ps bin (30-40ps) / ~6mW
ALTIROC	ATLAS/HGTD	130	15x15	TOA+TOT, 20ps bin (~35ps) / ~5mW TDC ~0.5mW@10% occupancy

NOT to be compared! – numbers very approximate, different operation scenarios – only to show order of magnitude

- Different techniques CFD, TOA+TOT, TAC+ADC are used for precise time measurement
- Time precision is strongly affected by sensor contribution
- CMOS 65nm or 130nm preferred

Fast sampling - State of the Art Multi-channel ASICs already completed (only <= 130nm considered)

Chip	Experiment /Detector	CMOS nm	No. chan.	ADC Fsamp. / N-bit / power	TDC	SoC type ASICs including: analog
SAMPA	ALICE/TPC	130	32	10MHz / 10-bit / 1.5mW	-	FE, DSP, high speed links, etc
PACIFIC	LHCb/SciFi	130	64	40MHz / 2-bit	-	
SALT	LHCb/UT	130	128	40MHz / 6-bit / 0.5mW	-	

The first complex multi-channel ASICs with sampling rates up to 40 MSps – LHC collision frequency 40MHz – are already operational or are being installed in LHC experiments. This has become possible thanks to the technology scaling and architecture development, in particular squeezing the ADC power to a level below the power of the analog front-end.