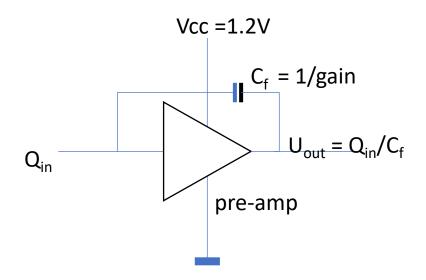
DRAFT


Wishlist future ASIC

Ad-hoc draft for suggestions towards a common ASIC for gas detectors

Please send suggestions **before** the Wednesday 6 Dec WG5 meeting

Task	Performance goal	Comments	Possible deliverables next 3-5 y
(Muon systems) New front end electronics	 1 fC threshold Geometrical avalanche quenching High sensitivity electronics and new detector structures to achieve stable and efficient operation (rate, occupancy) up to O(MHz/cm2) 	- Study of the integration of the FE electronics in the detector Faraday cage - Study of the integration of electronics and readout PCB	 Conceptual electronics design based on gas detector simulation and experimental measurements Development and test of a front-end prototype
(Large-volume drift chambers) Front-end ASIC for cluster counting	- High bandwidth- High gain- Low power- Low mass	achieve efficient cluster counting and cluster timing performances	full design, construction and test of a first prototype of the front-end ASIC for cluster counting
(Straw chamber) Electronic readout, ASIC	- Time readout with sub-ns precision - Leading edge and trailing edge time readout	- Dedicated R&D on ASIC	- ASIC - Readout system
(Time Projection Chambers) Low-power FEE	•< 5 mW/ch for >1e6 pad TPC - ASIC development in 65 nm CMOS	•continuous vs. pulsed	- Present stable operation of a multi- channel TPC prototype with a low- power ASIC
(Gaseous photon detectors) FEE	- High input C- Low noise- large dynamic range	•	- present an ASIC concept/prototype
(Gaseous timing detectors) Low-noise FEE	 - High input C - large dynamic range - Fast rise time - sensitivity to small charge - Low noise 	•	Define an ASIC

Higher dynamic range

increase V_{cc} for preamps ? dual gain: Qin -> 2 channels with gain1/gain2 = 4, 8, 16 logarithmic or dual-slope preamp

• • • •

Higher rates, less deadtime

interleaved SAR ADC blocks 10 or 12 bit?

••••

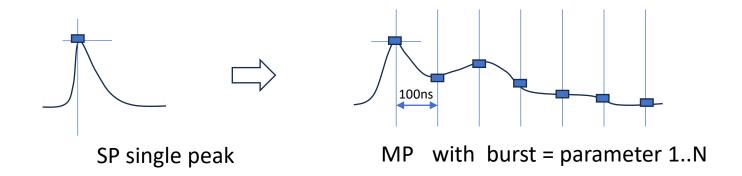
Higher spark immunity

add integrated TVS to inputs
use newer input MOS technologies
add fast common-mode stabilizer to preamp inputs

....

More flexible ASIC parameter Controls

add selective I2C register access


Faster and slower peaking times

16 ns ... 400ns

picoSeC Ion tail cutter

auto-reset CSA at 1st peak

Enhance peakfinder-only mode by adding 10-MHz trailing samples

Add simple Fast OR (threshold) output 32ch or 16 ch ?

Preamp gain settings
settable per channel
power of 2 increase