

GridPixes and their Application

Jochen Kaminski

University of Bonn

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

RD51 Collabration Meeting CERN 6.12.2023

From Micromegas to GridPix

Could the spatial resolution of single electrons be improved?

Diffusion in amplification region:

 $\begin{array}{ll} \mbox{Ar:}CO_2 \ 80:20 & \rightarrow \ \sigma = \ 11 \ \mu m \\ \mbox{Ar:}iC_4H_{10} \ 95:5 & \rightarrow \ \sigma = \ 11 \ \mu m \\ \mbox{Ar:}CF_4:iC_4H_{10} \ 95:3:2 \ \rightarrow \ \sigma = \ 11 \ \mu m \\ \mbox{Smaller pads/pixels could result in} \\ \mbox{better resolution!} \end{array}$

At NIKHEF the GridPix was invented.

Standard charge collection: Pads / long strips <u>Instead:</u> Bump bond pads are used as charge collection pads.

Charge avalanche is collected by one pixel

→ one hit corresponds to one primary electron

RD51 CM 12/2023 J. Kaminski NÌM A535 (2004) 506-510 NIM A845 (2017) 233-235

The ASICs - Timepix(3)

Timepix: Available for tests since Nov. 2006

Number of pixels: 256×256 pixelsPixel pitch: $55 \times 55 \ \mu m^2$ Chip dimensions: $1.4 \times 1.4 \ cm^2$ ENC: $\sim 90 \ e^{-1}$

<u>Limitations:</u> no multi-hit capability. Each pixel can measure either charge or time.

Timepix3: Available for tests since 2012

Number of pixels: 256×256 pixelsPixel pitch: $55 \times 55 \ \mu m^2$ ENC: $\sim 70 \ e^-$

- Charge (ToT) and time (ToA) available for each hit
- Timing resolution: 1.56 ns for duration of ~410 μs
- Zero suppression on chip (sparse readout)
- Multi-hit capable
- Output rate up to 5.12 Gbps

RD51 CM 12/2023 J. Kaminski

Medipix collaboration:

JINST 9 (2014) C05013

NÌM A581 (2007) 485-494 3

Timepix3 Readout in SRS

Carrier board (plugged into Intermediate board) Shape and number of chips depending on the detector

Microcontroller (read out via separate USB):

- Monitoring (Temperature, Voltages, ...)
- Analog TPX3 DAC readout
- External TPX3 DACs

RD51 CM 12/2023 J. Kaminski

FEC and A-card

Timepix3 Readout in SRS

Software and firmware open source

Several user interfaces (CLI, GUI, scripting)

So far used with one ASIC at max. 2.5 Mhits/s - Working on multichip and rate upgrades

	MIMAS A7	ML605	SRSv6	VCK190
Picture				
Status	Implemented	Implemented	Implemented	Ongoing
FPGA	Artix-7	Virtex-6	Virtex-6	Versal Prime (AI)
Capability	2 links @ 320 Mbps	8 links @ 320 Mbps	8 links @ 320 Mbps	> 8 links @ 640 Mbps
UNIVERSITÄT BONN		RD51 CM 12/2023 J. Kaminski		5

2023 CM 12/2023 J. Kaminski

UNIVERSITÄT BONN

- 1. Formation of Si_xN_y protection layer
- 2. Deposition of SU-8
- 3. Pillar structure formation
- 4. Formation of Al grid

5. Dicing of wafer

6. Development of SU-8

We have started to transfer the process to the FTD at Bonn in 2023/24.

RD51 CM 12/2023 J. Kaminski

Forschungs- und Technologiezentrum Detektorphysik

First stone laying ceremony 2.11.2016 Inauguration ceremony 8.11.2021

First structures made of SU8: 30µm high pillars and dykes

GridPix – Single Primary Electrons

CAST/IAXO – Search for Solar Axions

CAST: Decommissioned LHC-magnet is pointed to the Sun. Axions and Chameleons produced in the Sun convert into X-ray photons.

Axions / chame

Successor experiment (Baby-)IAXO is planned to be built at DESY.

- \rightarrow X-ray detectors with
- Low energy threshold
- High spatial resolution
- High radiopurity
- Shielded by lead

phot

Energy (keV)

UNIVERSITÄT BONN

NÌM A867 (2017) 101-107

JCAP 01 (2019) 032

CAST

RD51 CM 12/2023 J. Kaminski

1. data run 2014/15 \rightarrow Data published 2. data run 2017/18 \rightarrow Analysis is finalized

Data Run 2 had several improvements in the detector:

• 7 GridPix arrangement

(central main detector + 6 veto detectors)

- Signal decouple from grid and digitized by FADC
- 2 veto scintillators (behind GridPix and on top of lead shielding)
- Low material budget entrance window (300 nm Si₃N₄)

UNIVERSITÄT BONN

International Linear Collider (ILC) / Chinese Electron Position Collider (CEPC) Future Circular Collider (FCCee) are e⁺e⁻ colliders with: $\sqrt{s} = 90 \text{ GeV} - 1 \text{ TeV} / 90-240 \text{ GeV}$ Overall length of 21-50 km / 100 km

Requirements of TPC from ILC TDR vol. 4

7 r_{in} rout Geometrical parameters 329 mm 1808 mm + 2350 mm Solid angle coverage up to $\cos\theta \simeq 0.98$ (10 pad rows) TPC material budget $\simeq 0.05 \ {
m X_0}$ including outer fieldcage in r $< 0.25 \ \mathrm{X_0}$ for readout endcaps in z \simeq 1-2 imes 10 $^{6}/$ 1000 per endcap Number of pads/timebuckets $\simeq~1 imes$ 6 mm 2 for 220 padrows Pad pitch/ no.padrows $\simeq~60~\mu$ m for zero drift, $<~100~\mu$ m overall $\sigma_{\rm point}$ in $r\phi$ $\simeq 0.4 - 1.4$ mm (for zero – full drift) $\sigma_{\rm point}$ in rz $\simeq 2 \text{ mm}$ 2-hit resolution in $r\phi$ $\simeq 6 \text{ mm}$ 2-hit resolution in rz $\simeq 5 \%$ dE/dx resolution $\delta(1/p_t) \simeq 10^{-4}/\text{GeV/c}$ (TPC only) Momentum resolution at B=3.5 T

International Large Detector

- Standard layout HEP detector with improved performance
- TPC as main tracker

In addition: very high efficiency for particle of more than 1 GeV.

Parameter

PixeITPC for tracking at Colliders

A pixeITPC has some advantages compared to a conventional pad TPC

- Lower occupancy \rightarrow easier track reconstruction at higher backgrounds
- Improved dE/dx: <4% seems possible with electron or even cluster counting
- \bullet Removal of $\delta\text{-rays}$ and kink removal
- No angular pad effect

To readout a large TPC:~50000 GridPixes needed

- \rightarrow Demonstrator with 160 GridPixes (Timepix) in 2015 Central module with 96 GridPixes (coverage 50%)
- 2 weeks of successful test beam.

RD51 CM 12/2021 EEE TNS 64 (2017) J. Kaminski 1159-1167

Tracking with Timepix3

New effort to build larger modules with Timepix3 based GridPixes: First single chip (2017), then quads (2018), finally 8 quads (June 2021).

Tracking with Timepix3

J. Kaminski

Example result with B = 1T and p = 6 GeV

UNIVERSITÄT BONN

Tracks have about 1000 hits (on ~16 cm track length)

Mean residuals are close to zero. The rms of mean residuals is ~10-11 μ m for B = 0T and 12-14 μ m for B = 1T.

Publication close to final.

- CAST type detector with 3 cm drift
- Different He-based gas mixtures with CO₂ or DME
- Test beam at PETRA III (DESY) and KARA (KIT)
- Beam energies 4-11 keV
- Beam is >95 % linearly polarized
- \rightarrow reconstructed polarization 76% (sofar)

 \rightarrow Difficult to measure at low X-ray energies with standard techniques

X-ray Polarimetry

Number of events 00 08

y [pixel]

X-ray Polarimetry in Astrophysics

INAF 21

Project by the X-ray polarimetry group at INAF-IAPS (lead by Paolo Soffitta). Idea is to prepare and propose a follow-up mission of the IXPE satellite, potentially using a GridPix instead of a Gas Pixel Detector. Important first tests have been performed with 2 standard GridPixes: 1.) Thermo vacuum tests

2.) random vibration test \rightarrow no resonances found up to 2 kHz

Before and after the two environmental tests high resolution pictures of the grid were taken and the ASICs were tested electronically → no differences were found

Muon EDM at PSI

A new project for a dedicated First tests to evaluate GridPix-TPC (F. measurement of the muon EDM Renga, INFN Roma) to characterize the SC injection muon beam during the commissioning of channel the phase-I experiment (2025-2026). 125 MeV/cSolenoid Test beam with different mixtures of Trigger He:iC₄H₁₀ (95:5, 90:10, 85:15) Relative Hit Efficiency Muon tagger Scintillators 85:15 0.5 90:10 CMOS pixel detctor - 95:5 SciFi 350 450 300 400 HV [V] A second test α [cm⁻¹] 0.08 beam with Ground HV Calorimeter 0.06 He:CO₂ was 0.04 performed, now tests with 0.02 < 1 mp < 1 atm. JINST 18 (2023) P10035 E [V/cm]

UNIVERSITAT

Istituto Nazionale di Fisica Nucleare Sezione di Roma

8515

Rich study of gas parameters: $V_{drift}, D_T, D_L,$ attachment α

9505

9010

Negative Ion TPC

Detector with 32 GridPixes based on Timepix3 \rightarrow Nikhef setup

UV laser (337nm) used to generate tracks.

Gas mixtures:

Ar:iC₄H₁₀:CS₂ 93.6:5.0:1.4

- + O₂ (650-1150 ppm) -minority carrier
- + TMPD (to enhance sensitivity to laser)

• Gas at Minority carrier Majority carrie atmospheric pressure • Both majority (CS₂) and minority (O₂) 4.18 m/s V_{drift} carriers 300 V/cm Edrif observed Transverse 40 Drift distance [mm] diffusion at and σ_z from fit [mm] thermal limit ransverse diffusion of all detected ions Longitudinal diffusion of the majority carrier ion • Preparing 0.35 new setup at 0.3 Bonn 0.25 0.2 E 300 V/cm 0.15 D, 132 µm/ (cm σ_{x0} 0.1 86 µm 152 µm/ (cm D, 0.05 σ_{z0} 131 µm 25 30 35 20 Drift distance [mm]

RD51 CM 12/2023 J. Kaminski NIM A1014 (2021) 165706

NIGHT DETECTOR

GridPix Production in the Future

Once the GridPix production is reestablished we have several ideas

- revisit hole size/amplification study
 - $\rightarrow\,$ interesting for higher / lower gas pressures
- reduce resistivity of protective layer
- double / triple grid structure (see next slide)

(-investigate low power mode of Timepix3 – 1/10 of regular power are claimed)

Other ASICs:

With the flexible setup in Bonn, other designs of the grid can be easily implemented

 \rightarrow Any chips are welcome

Timepix4:

- larger area (4x Timepix3), 4-sided buttable, slightly better time resolution, lower power consumption

- we can certainly do grids on Timepix4, if someone wants them, but we will not switch as a standard because

* machines are laid out for 20 cm not 30 cm diameter

* can't afford to implement in readout system

* large reticle size reduces yield significantly

Reducing the IBF in a Pixel TPC

J. Kaminski

The Ion back flow can be reduced by adding a second grid to the device. It is important that the holes of the grids are aligned. The Ion back flow is a function of the geometry and electric fields. Detailed simulations – Gr validated by data.

Ion backflow	Hole 30 µm	Hole 25 µm	Hole 20 µm
Top grid	2.2%	1.2%	0.7%
GridPix	5.5%	2.8%	1.7%
Total	12 10-4	3 10-4	1 10-4
transparancy	100%	99.4%	91.7%
	RD51 CM 12/2023		

With a hole size of 25 µm an IBF of 3 10⁻⁴ can be achieved and the value for IBF*Gain (2000) would be 0.6.

UNIVERSITÄT BONN

Summary and Outlook

GridPixes are seeing a transition from Timepix to Timepix3.

The grid production can soon be done in Bonn, which will open possibilities for new ideas and R&D.

More projects are becoming interested in testing the devices and evaluate them for their applications.

There is quite a large interest in the possible PID performance of GridPixes in particular if cluster counting can be exploited.

Acknowledgment

This is of course the work of many people.

In Bonn these are: Yevgen Bilevych, S. Hartung (who build the InGrids) C. Krieger, S. Schmidt, T. Schiffer, J. von Oy (CAST/IAXO), M. Lupberger, D. Danilov, A. Hamann (LCTPC). M. Gruber, V. Plesanovs (Polarimetry) M. Köhli, D. Pal, T. Block (Neutron TPC) L. , A. Hoverath (SchulTPC/CLEOPATRA) and of course Klaus Desch.

Special thanks goes to our technical team H. Blank, W. Ockenfels, S. Zigann-Wack, as well as the electronics and mechanical workshops.

At Nikhef:

H. van der Graaf, F. Hartjes, P. Kluit, C. Ligtenberg, G. Raven, J. Timmermans.

and even more on smaller projects.

