

SampaSRS data reconstruction tool

RD51 collaboration meeting 06/12/2023

Geovane G. A. de Souza¹, Thiago B. Saramela¹, Hugo Natal da Luz², Marco Bregant¹.

1-High Energy Physics and Instrumentation Center @ IF-USP (Brazil) 2-Institute of Experimental and Applied Physics (ÚTEF) @ CTU in Prague (Czech Rep.)

Summary:

Introduction

- SAMPA overview
- The first test setup
- The first version of the software

Non-zero suppression acquisition

- Non-zero suppression
- The clustering algorithm
- First results without common-mode correction

The common-mode correction algorithm

- Noise reduction
- Results for energy resolution
- Results for position resolution

The operation on Zero suppression

SAMPA overview

- TSMC CMOS 130nm, 1.25V technology.
- 32 Channels, Front-end + ADC + DSP.
- Positive and negative polarities with 2 analog front-end modes:
 - 20 or 30 mV/fC with 160 ns shaping time.(Sensor Cap: 12 25 pF)
 - 4 mV/fC with 300 ns shaping time. (Sensor Cap: 40 80 pF)
- ADC: 10-bit resolution, up to 18.5 MSPS.

The SAMPA chip is an ASIC (Application Specific Integrated Circuits) developed in collaboration with the *Laboratório de Sistemas Integráveis* (LSI) at POLI, to be used in the ALICE TPC and Muon Chamber during the Run3.

G. Souza

G. Souza 2023

We are developing a software for control, acquisition, decoding of data, and event reconstruction.

Download the precompiled binaries from WinPcap.

RD51

Collaboration Meeting

To build you also need to pass the location of the extracted binaries to CMake:

5

2023

We are developing a software for control, acquisition, decoding of data, and event reconstruction.

RD51 Collaboration Meeting

SampaSRS software

https://github.com/SampaSRS/SampaSRS

Acquisition details:

- 1. Total number of events
- 2. Event rate
- 3. Ratio of valid events
- 4. Network speed/usage
- 5. Write speed

SampaGUI window (left to right):

- 1. Energy spectrum
- 2. Channel with higher ADC value
- 3. Waveform of the channel with

higher ADC value

The complete setup

Hybrid board overview:

Each hybrid provides 128 channels The physical dimensions (width of the hybrid) are compatible with the readout plane (10 x 10 cm²) developed by the RD51 collaboration

Adapter board overview:

Each SAMPA chip is connected to one high speed serializer A single Display-Port cable is used to connect the hybrid and the adapter board

The adapter board has four deserializers and a PCIx16 standard to connect a Front-End Card (FEC).

FEC:

Ethernet communication limit to 1Gbit/s

Acquisition rate: Depends on the type of operation

2023

Acquisition rate: Depends on the type of operation

G. Souza

2023

We apply a reconstruction algorithm to data: Offline ZS \rightarrow Time cluster \rightarrow position cluster \rightarrow CM.

We have set an X-ray position sensitive detector to test the integration with SAMPA and the SRS

Triple-GEM

 $Ar/CO_{2}(70/30)$

1D strip readout (0.4 mm pitch)

11

G. Souza 2023

Results without Using a lead mask + X-ray tube we can calculate the position resolution of the detector

RD51 Collaboration Meeting

```
12
G. Souza <sub>2023</sub>
```


13

The position resolution is normally given by the contrast at 10%

RD51 Collaboration Meeting

ıza 2023

14

Common-mode correction

$$C(t) = \frac{\sum_{i=0}^{N} B_i(t) - \bar{B}(t)}{N}$$

RD51 Collaboration Meeting

Baseline and noise before common-mode correction

Grounding issues in our lab

16 G. Souza ₂₀₂₃

≈5000 e-

Common-mode correction

Reduction to half of the noise (works for offline ZS runs.)

Common-mode correction (Energy spectrum ⁵⁵Fe)

RD51 Collaboration Meeting

The position resolution is normally given by the contrast at 10%

We can see additional contrast points (unfortunately one was on a dead region of the hybrid - missing SAMPA chip)

RD51 Collaboration Meeting

X-ray fluorescence using SAMPA and SRS

RD51 Collaboration Meeting 20

The Time Projection Chamber prototype

- 80 mm drift region Ar/CO₂(70/30)
- 3D printed frame- PLA
- Field cage made of PCB
 strips and SMD resistors

- Triple-GEM and pad readout (10x10 cm²)
- 10 x 12 pads

Detector tilted to detect longer tracks (event rate ≈ 1 Hz)

Secondary events/noise that eventually cross the threshold can be removed by applying a algorithm to remove non-neighboring signals.

RD51 Collaboration Meeting

Example 2:

Artifacts yet somewhere unknown in the electronics (maybe a ground/baseline shift?) generated a small amplitude signal that affects many channels at the same time. They can be removed during data processing.

Example 3:

Whenever the charge saturates a channel, the baseline increases its mean. In these cases, the zero suppression cut is changed to 200.

RD51 Collaboration Meeting

Conclusions:

- The integration between SAMPA and the SRS was a success and we are capable to provide the tools (hardware/software) for other groups.
- We were able to achieve up to 20 kHz acquisition rate in non-zero suppression mode and we calculate that we can work up to 2 MHz in zero suppression mode (we will start testing and working on the reconstruction with this feature)

Prospects:

- Work with more than 1 hybrid (for 2D images)
- Think on ways to apply common-mode for zero suppressed data

Thank you!

Contact: geovane.souza@usp.br

