Simulation and Reconstruction of Charged Particle Trajectories in a Time Projection Chamber with Orthogonal Fields RD51 Collaboration Meeting

Martin Vavřík

martin.vavrik@cvut.cz IEAP CTU PRAGUE

December 6, 2023

Funding: GAČR GA21-21801S

Computational resources were provided by the e-INFRA CZ project (ID:90254), supported by the Ministry of Education, Youth and Sports of the Czech Republic.

M. Vavřík

OFTPC track simulation & reconstruction



## Motivation

- 2 Track Simulation
- 3 Track Reconstruction
- 4 Energy Reconstruction

#### 5 Summary & Future



< ∃⇒

## Motivation

- 2 Track Simulation
- 3 Track Reconstruction
- 4 Energy Reconstruction
- 5 Summary & Future



- ∢ ⊒ →

# Motivation: ATOMKI Measurements

 Measurement of anomalies in the angular correlation of an electron-positron pair internally produced in excited <sup>8</sup>Be and <sup>4</sup>He



# OFTPC: Detector Configuration

 Time Projection Chamber with Orthogonal Fields (OFTPC) – electric and magnetic field perpendicular (gas mixture Ar/CO<sub>2</sub> – 70/30)



Two out of the six OFTPC chambers. [4]



OFTPC with a triple gas electron multiplier (GEM) readout. [4]\_\_\_



- No solenoid permanent magnets used to generate the field
  - Parallel fields difficult to create with permanent magnets
- Space constraints granularity of the TPC readout limited in order to fit one SAMPA/SRS hybrid in each of the six sectors
  - Parallel fields would bend particles parallel to readout, requiring much larger number of pads
  - These trajectories would extend to more than one sector, requiring alternative architecture of the detector
- We will show a similar resolution for significantly lower cost



# **OFTPC:** Complications



- The field interferes with the direction of the drift of secondary electrons
- Curvature of the track is not constant in this field (deviation from a circle)



#### 1 Motivation

#### 2 Track Simulation

3 Track Reconstruction

#### Energy Reconstruction

#### 5 Summary & Future



M. Vavřík

< ∃⇒

- Garfield++ used for track simulation
  - Primary relativistic particle simulated using the HEED program [6]
  - Secondary ionization electrons simulated using microscopic tracking (uses equations of motion)
    - Relatively slow (typically 5-30 CPU hours per track), very precise especially for small structures.
- Batches of 9702 tracks with different initial parameters simulated on a grid (MetaCentrum [7])
  - Electrons and positrons
  - 11 different energies from 3 MeV to 13 MeV (covers range for <sup>8</sup>Be)
  - 21 different angles  $\varphi$  and 21 different angles  $\theta$  (next slide)



# **Track Simulation**





# Simulated Track Example (microscopic tracking)

- Electron track with kinetic energy 8 MeV,  $\theta=0^\circ$  and  $\varphi=0^\circ$
- Diffusion less than 1.5 mm in both directions





- We want an unambiguous map of the drift of secondary electrons for the reconstruction
- We can use a simulation of evenly spaced electrons
  - Current spacing 5 mm, 100 electrons simulated in each location with 0.1 eV energy in a random direction



- As a result we get an approximation of a mapping from initial coordinates of the electrons (x, y, z) to the readout coordinates (x', y', t)
- By interpolating we can get the inverse map
- We can use the inverse map to finally create mapping from our discrete readout values (channel number, time) to voxels of the primary track







2D visualization of the simulated mapping  $\mathcal{M}$  and the inverse mapping  $\mathcal{M}^{-1}$ .





Distortion map

x and y coordinate distortion at different z values (denoted by colors).







Pad voxel boundaries for different times.



э

M. Vavřík

OFTPC track simulation & reconstruction

December 6, 2023

(日)

## 1 Motivation

- 2 Track Simulation
- 3 Track Reconstruction
  - 4 Energy Reconstruction

#### 5 Summary & Future



15 / 23

- ∢ ⊒ →

# Track Reconstruction

- At first using only the inverse map (not accounting for readout pads)
- Later simple reconstruction with pads and time bins, counting the number of electrons in each bin



### 1 Motivation

- 2 Track Simulation
- 3 Track Reconstruction
- 4 Energy Reconstruction

#### 5 Summary & Future



< ∃⇒

# Energy Reconstruction

- Prefit with circle with smoothly attached lines
- Kinetic energy fit using 4<sup>th</sup> order Runge-Kutta
- Known initial position and direction of the particle assumed
- Currently cca 0.3 CPU seconds per track



Energy reconstruction of 8 MeV electron track with both circle fit (8.36 MeV) and Runge-Kutta fit (8.072 MeV)



OFTPC track simulation & reconstruction

Electrons

#### Positrons

Energy resolution of Runge-Kutta reconstruction (with pads)



Relative reconstruction deviation of the kinetic energy of electron and positron tracks (cca 5000 of each simulated).



э.

# Energy Reconstruction Precision

#### Electrons

## Positrons



Relative reconstruction deviation of the kinetic energy of electron and positron tracks (cca 5000 of each simulated).



# Energy Reconstruction Precision

#### Electrons

Energy resolution dependence on phi

# Positrons

Energy resolution dependence on phi



Relative reconstruction deviation of the kinetic energy of electron and positron tracks (cca 5000 of each simulated).



# **Energy Reconstruction Precision**

#### **Electrons**

Energy resolution dependence on theta 60 8 55 50 45 40 35

## Positrons

Energy resolution dependence on theta



Relative reconstruction deviation of the kinetic energy of electron and positron tracks (cca 5000 of each simulated).



-10

-15 -20

### 1 Motivation

- 2 Track Simulation
- 3 Track Reconstruction
- 4 Energy Reconstruction

## 5 Summary & Future



- ∢ ⊒ →

• Several batches of tracks have been simulated for testing purposes.

•  $heta \in [-17.1^\circ, 17.1^\circ]$ ,  $arphi \ \in \ [-16.3^\circ, 16.3^\circ]$ ,  $E_k \in [3, 13]$  MeV

- The map of secondary electron positions and drift times has been generated.
- The map has been tested by the track reconstruction.
- First results suggest that:
  - Current energy resolution (FWHM) is 3.2 % for electrons and 4.8 % for positrons.
  - OFTPC works well on a simulation level.
  - Some of the systematic errors can be corrected.



- Account for parasitic tracks caused by high energy secondary electrons
- Account for GEM in the simulation, charge distribution between pads
- Optimize Runge-Kutta integration fit with likelihood approach (instead of least squares) if needed
- Write a faster simulation method for secondary electrons using the map
- Fix the observed systematic errors of reconstruction
- Test different geometries



# Thank you for your attention.



∃ →

 J. Gulyás, T.J. Ketel, A.J. Krasznahorkay, M. Csatlós, L. Csige, Z. Gácsi, M. Hunyadi, A. Krasznahorkay, A. Vitéz, and T.G. Tornyi. A pair spectrometer for measuring multipolarities of energetic nuclear transitions.

Nucl. Instr. Meth. A, 808:21-28, 2016.

[2] Sas, N. J. and others.
Observation of the X17 anomaly in the <sup>7</sup>Li(p,e<sup>+</sup>e<sup>-</sup>)<sup>8</sup>Be direct proton-capture reaction.
arXiv, May 2022.

[3] A. J. Krasznahorkay, M. Csatlós, L. Csige, J. Gulyás, A. Krasznahorkay, B. M. Nyakó, I. Rajta, J. Timár, I. Vajda, and N. J. Sas. New anomaly observed in <sup>4</sup>He supports the existence of the hypothetical x17 particle.
*Phys. Rev. C*, 104:044003, Oct 2021.

#### [4] A.F.V. Cortez, H. Natal da Luz, R. Sykora, B. Ali, L. Fajt. Measurement of anomalies in angular correlation of electron and positron internally produced in excited 8Be and 4He.

[5] ANSYS, Inc. Ansys Maxwell, Low Frequency EM Field Simulation. https: //www.ansys.com/products/electronics/ansys-maxwell.

#### [6] I. B. Smirnov.

Modeling of ionization produced by fast charged particles in gases. *Nucl. Instr. Meth. A*, 554:474–493, 2005.



#### [7] MetaCentrum.

Computational resources were provided by the e-INFRA CZ project (ID:90254), supported by the Ministry of Education, Youth and Sports of the Czech Republic.

https://metavo.metacentrum.cz/en.



- Ionization electron map simulation of secondary electrons in the entire volume of the OFTPC
- Irack(s) simulated using HEED and microscopic tracking
- Ocunting the number of secondaries in each pad and time bin of the readout
- Using the map to reconstruct the position of centers of pads for given centers of time bins
- Fitting of the reconstructed points with circle and lines fit using least squares weighted by the number of secondaries in each point
- Using the magnetic field in the middle of the track to get first energy estimate
- Using the 4<sup>th</sup> order Runge-Kutta fit with least squares to refine the energy estimate



#### Ionization Electron Map Reconstruction Residuals



## Ionization Electron Map Reconstruction Residuals



## Track Simulation – TPC Window





M. Vavřík

▶ < ∃ >

!3 / 23

## Phi Systematic Error and Pad Geometry





æ

イロト イヨト イヨト イヨト