

Studies on DLC characterisation

Kensuke Yamamoto^A

S. Ban^A, W. Li^A, A. Ochi^B, W. Ootani^A, A. Oya^A, H. Suzuki^B, M. Takahashi^B (^AThe University of Tokyo, ^BKobe University)

> RD51 Collaboration Meeting 4-8 December 2023

Resistive electrodes for DLC-RPC presented in RD51 collaboration meeting in June 2022

DLC in MPGD

- Diamond-like carbon is widely used in MPGD
 - As resistive material to prevent discharge

DLC in MPGD

- Diamond-like carbon is widely used in MPGD
 - As resistive material to prevent discharge

Timeta	ble	
< Mon 04	/12 Tue 05/12 Wed 06/12 Thu 07/12 Fri 08/12 All days	Demands for DLC get increasing
	Print PDF Full screen Detailed view Filter Session legend	
Cor	mmunications 😑 WG1 - Technological Aspects and X	
14:00	Communications: Introduction Eraldo Oliveri, Maxim T/T 40/S2-A01 - Salle Anderson, CERN 14:00 - 14:10	
	The ICFA Instrumentation Award (F. Sauli and I. Giomataris) Dr Maksym Titov et al. 40/S2-A01 - Salle Anderson, CERN 14:10 - 14:15	
	Update on the microbulk detectors for the BabyIAXO experiment Ana Quintana García 40/S2-A01 - Saile Anderson, CERN 14:15 - 14:40	
15:00	µRTube: a new geometry concept for MPGD technologies Riccardo Farinelli 40/S2-A01 - Salle Anderson, CERN 14:40 - 15:05	← μ R Tube
13.00	Development of thin-gap MPGD technologies and first results of 2023 FNAL test beam Kondo GNANVO 40/S2-A01 - Salle Anderson, CERN 15:05 - 15:30	
	Coffee break 40/S2-A01 - Salle Anderson, CERN 15:30 - 16:00	
16:00	Status and future perspectives on the R&D on Resistive High granularity Micromegas (small-pad or pixelated MM)	← Resistive MM
	New Proposals for Large Track Detectors for FASER II Experiments Atsuhiko Ochi 40/S2-A01 - Salle Anderson, CERN 16:25 - 16:50	← μ R ₩ELL
17:00	Status of DLC-RPC Development for MEG II Experiments Masato Takahashi et al. 40/S2-A01 - Salle Anderson, CERN 16:50 - 17:15	← DLC -RPC

DLC in MPGD

- Diamond-like carbon is widely used in MPGD
 - As resistive material to prevent discharge

Supply of DLC starting

What we know about DLC

- Used in various industries, e.g. coating
 - Characteristics should be known in the field of material science
 - Few documentation on DLC deposited by physical sputtering method
- Amorphous carbon
 - Properties of both sp² and sp³
- Attached well on **polyimide**
- Resistivity can be controlled by
 - Nitrogen doping for resistivity reduction
 - Thickness with an accuracy of 100%
 - Thermal annealing with an accuracy of 10%

What we **want to know** about DLC

- Used in various industries, e.g. coating
 - Characteristics should be known in the field of material science
 - Few documentation on DLC deposited by physical sputtering method
 - Somehow import knowledge into gaseous detectors in HEP
- Amorphous carbon
 - Properties of both sp² and sp³
 - What is the fraction between sp^2 and sp^3 ?
- Attached well on **polyimide**
 - Can DLC be deposited on other substrates?
- Resistivity can be controlled by
 - Nitrogen doping for resistivity reduction
 - Thickness with an accuracy of 100%
 - Thermal annealing with an accuracy of 10%
 - What is the mechanism of thermal annealing?

Today's topics

- Found a great review paper
 - J. Robertson, Mater. Sci. Eng. R Rep. 2002, 37, 129–281
 - <u>https://doi.org/10.1016/S0927-796X(02)00005-0</u>
- Molecular structure analysis (Raman spectroscopy)
 - DLC tried to be sputtered on some substrates
 - sp² and sp³ fraction

Raman scattering spectroscopy

- Measure molecular structure of DLC by Raman spectrum
- Raman spectrum information
 - Intensity ratio: material ratio
 - Raman shift: structure
 - . . .

- Polyimide is not proper for Raman spectroscopy
 - Consists of C

DLC sputtering onto some materials

• DLC sputtered on polyimide so far

Kapton tape put

See the situation after removal (Peeling test)

DLC on glasses

DLC on glass epoxy

DLC on 6 types of metal (Zn, Ni, Pb, Cu, Fe, Al)

Peeling test result

Material	Result	Material	Result
Polyimide	Ο	Zinc (Zn)	\bigtriangleup
Glass-epoxy (FR4)	Ο	Nickel (Ni)	X
Heat-resistant glass	Х	Lead (Pb)	\bigtriangleup
Tempered glass	Х	Copper (Cu)	Used for Raman spectrum measuremer
Quartz glass	X	Iron (Fe)	X
		Aluminium (Al)	X

Raman spectroscopy setup

- Measurement device
 - Thanks to S. Chiashi in Dept. of Mechanical Engineering, UTokyo
 - 4 lasers with different excitation wavelengths (488–785 nm)
- Samples
 - DLC sputtered on Cu with and without thermal annealing
 - Annealing: 200°C for 30 minutes

Raman spectrum of non-annealed sample

- Succeeded in measuring Raman spectrum
- Our DLC categorised as sputtered a-C, a-C:H, or ta-C?

Excitation wavelength dependence

- Measured with different excitation wavelengths
 - Dependence on peak position observed
- Compare with the prior studies

Excitation wavelength dependence

Where hydrogen comes from?

- It is known DLC contains hydrogen if hydrocarbon gas flows in physical sputtering method
- But, we do NOT use any hydrocarbon gas
 - Outgas from polyimide could contain hydrogen?

Categorisation in phase diagram

- Raman spectroscopy indicates our DLC categorised as a-C:H
- Hydrogen source not fully understood
- ➡ Estimate category with large uncertainty
 - ➡ Look into properties of a-C:H and ta-C

Thermal annealing observation

- Thermal annealing reduces resistivity
 - Depends on temperature
 - NOT depends on time
- Resistivity can be controlled with an accuracy of 10%

Thermal annealing of ta-C

- Thermal annealing of ta-C is well known
 - a-C:H as well. But,
 - "Thermal annealing of a-C:H also reduces the stress, as in ta-C. However, as the bonding in a-C:H is less stable during annealing, annealing is less useful in this case."
- Mechanism described
 - Thermal annealing converts a small fraction of sp³ (2%) to sp²
 - Distance between atoms is different between sp² and sp³
 - New sp² structure has aligned electron orbitals
 - The conversion causes **exponential decrease** in resistivity
 - Compressive stress relieved by new sp² structure with electron orbitals aligned

Change by annealing

Our measurement consistent with previous works

Conclusion

- DLC attached well on FR4 and Cu as well as polyimide
- Measure Raman spectroscopy for DLC
 - a-C:H indicated
 - Hydrogen source not understood
 - Our DLC categorised as a-C:H and ta-C phases with large uncertainty
- Discuss thermal annealing
 - A small fraction of sp³ converted to sp² with electron orbitals aligned
 - Resistivity decrease correlated with compressive stress relief
- This study can help our understanding and fabrication of DLC
 - Especially when sputtering in our own sputtering facilities

Reference & Acknowledgement

- Reference
 - J. Robertson, Mater. Sci. Eng. R Rep. 2002, 37, 129–281
 - A. C. Ferrari and J. Robertson, *Phys. Rev. B* 64, 075414
 - A. C. Ferrari, et. al., J. Appl. Phys. 85, 7191–7197
- Acknowledgement
 - Be-Sputter Co. Ltd.: Sputtering
 - S. Chiashi and R. Kaneda from *Dept. of Mechanical Engineering, the University of Tokyo*: Raman Spectroscopy

Backup

Wavelength dependence

Wavelength dependence

Wavelength dependence

Raman spectra w/(o) annealing

- No clear appearance of D peak by annealing at 200°C
 - However, observed a bit

FIG. 9. Variation of G peak position, I(D)/I(G) ratio and G peak position and G peak FWHM of the visible Raman spectra of Fig. 8, vs annealing temperature; the lines are guide to the eye.