

GEM Detectors Under High Rate at Jefferson Lab

Xinzhan Bai University of Virginia

RD51 Collaboration Meeting CERN, Dec. 4 – 8, 2023

Outline

- GEM detectors for the SBS program at Jefferson Lab
- High rate environment
- Simulation and DAQ efforts
- GEM detectors for the future SoLID program at Jefferson Lab
- Summary

SBS Program at Jefferson Lab

- Measure nucleon form factors at high Q² with high precision
- High Q² measurement, low cross section (quasi-elastic channels), requires high luminosity

- □ Started running: Sep. 2021
- GMn/nTPE: Completed Feb. 2022
- GEn Helium-3: Completed Nov. 2023
- GEn-RP: Projected run April 2024
- GEp: Projected run 2024

50 Years of QCD https://arxiv.org/pdf/2212.11107.pdf

GEM Detectors for the SBS Spectrometer

- □ SBS spectrometers open geometry configuration
- Luminosity up to 5x10³⁸
- GEM Detectors to handle the high rate

- Two detector-package arms: electron arm + hadron arm
- For SBS-GEn:

- **5 layers** in BB electron arm
- **8 layers** in SBS handron arm

Bigbite electron arm

60x200 cm² layers, made of 4

60x50 cm² GEM Modules

GEM Detectors in BigBite Spectrometer

40x150 cm² layers, made of 3 40X50 GEM modules 40x150 cm² layers, made of a single module, no dead area in active area

INFN XY Layer

UVA UV Layer

UVA XY Layer

RD51 Collaboration Meeting

Rate Requirements for SBS GEM Detectors

- Most challenging experiment GEp coming in 2024
- High background rate (~275 kHz/cm²), mainly from low energy photon conversion
- Large data volume from high number of readout channels

Photon conversion rate from G4SBS on a standard COMPASS-structure triple GEM Detector – plot taken from SBS CDR

- One solution is to optimize the GEM detector structure
- Reduce the photon conversion rate on GEM detectors

Effort to reduce the photon conversion rate on GEM detectors

See Kondo's Monday talk on thin-gap beam test results

NIVERSITY

Simulation on different GEM foil/detector structure

- Prototypes of different configurations completed
- Under test using x-ray
- Similar setup in Geant4
- Simulation results shows an improved results on Cr/Al cathode foils

UVA x-ray

50 X-Ray Current(microA)

RD51 Collaboration Meeting

- Photon conversion – cathode foil, drift region (thin-gap)
- **Experimental measurements**
 - Current from readout board
 - cluster count under a fixed amount of time
- Significant photon-converted cluster count reduction: 16% for Cr GEM detectors

Cathode

15 20 25 30 35 40 UNIVERSITY

1. Baseline / Standard

- Experimental measurements
 - **Current from readout board**
 - cluster count under a fixed amount of time
- Significant photon-converted cluster count reduction: 30% for Thin-Gap GEM detectors
- Simulation study on-going Garfield / Geant4

NIVERSITY

DAQ Challenges for the SBS program

Most challenging experiment – GEp – RO channels

GEp Detectors	Channels	Readout	Туре
<u>SBS Hadron Arm</u> Front Tracker (8 GEM Layers) Rear Tracker (8 GEM Layers) HCal	75,776 90,112 288	MPD/APV MPD/APV FADC250	VTP VTP VME
BigBite Electron Arm ECal ECal Sum CDET	1710 219 2688	ADCs 1881M TDCs 1877S TDCs 1877S	Fastbus Fastbus Fastbus

GEMs take the majority (>95%) of readout channels

- Expected Singles Hit Rates (front tracker: 275 kHz/cm²)
- Cluster size (MIPs) : 2.5 strips **30% strip occupancy**
- 8 layers for tracking system, minimum 4 layers fired out of 8 : tracking eff. ~75%
- □ Samples/Event: 6
- Trigger Rate: 5 kHz

GEp DAQ data flow – plot Courtesy of Evaristo Cisbani – INFN

Data Path for the SBS GEM DAQ

- □ 128 analog ch / APV25 ASIC
- **3.4 us trigger latency** (analog pipeline)
- Capable of sampling signal at 40 MHz
- □ Multiplexed analog output (100 kHz readout rate)

MPD modules designed for SBS Program

- Up to 16 APV cards on a single module
- 2 ns time resolution (APV clock synchronization)
- Arriga GX FPGA 128 MB DDR2-RAM
- **Online zero suppression**

card

Online Zero Suppression

- Online zero suppression algorithm implemented on MPD module on-bard FPGA
- **G** 3 different algorithms developed (Sorting, Danning, Histogramming)
 - First 2 algorithms developed by UVA group
 - Danning Algorithm has been successfully implemented on the FPGA firmware production algorithm for GMn, GEn experiments Ben Raydo, JLab
 - Histogramming algorithm (Andrew Puckett, UConn) to be implemented for GEp experiment optimization for unexpected polarity-inverted "signals"

Average of ~70% data reduction rate for GMn – depends on occupancy

fiber_4_slot_6_apv_id_11

Raw APV Data Frame

Offset & Common Mode Correction

Zero Suppression

Observations Encountered during SBS-GMn Run

- □ New observations on the performance of GEM electronics inverted polarity (*signals??*)
- On-going investigation effort for the causes (only observed this in the experimental Hall)

Preliminary study shows non correlation with real signals

GEM Detectors for the SoLID program

- □ Study nucleon 3D structure using the upgraded 12 GeV CEBAF
- Two major configurations PVDIS, SIDIS detectors interchangeable
- Even larger GEM detector assembly, more than 200 modules

DAQ for SoLID GEM Detectors – More Challenging

- High luminosity (up to 10³⁹) : ~ 500 kHz/cm² background rate
- DAQ trigger rate: ~ several hundreds of kHz
- **Q** Reduce data rate \rightarrow VMM3a chip, **6-bit** ADC readout
- **Given Streaming readout on plan for SoLID**

Summary

- Spectrometers at Jefferson Lab require operating GEM detectors under high-rate environments
- Many techniques have been (are going to be) implemented to accommodate the high-rate situation
 - DAQ optimization
 - GEM Detector R&D simulation study / prototype testing
 - □ Improved GEM Detector HV system,
- Up To now, good and stable operation of GEM Detectors for year-long continuous running
- New observations have been identified, investigation on going

Acknowledgement

Sincere thanks to:

- The SBS Collaboration
- The MPGD community for thorough R&D efforts
- Continuous support from CERN/PCB workshop
- US Department of Energy, Office of science, Office of Nuclear physics award number DE-FG02-03ER41240

Backup Slides

GEM DAQ Readout Limits

MPD-VTP readout limits

- □ 15 APVs per MPD, 128 strips per APV, 6 time samples,
 32-bit word per 2 samples → MPD event size: ~23 kBytes
- MPD to Payload Card data bandwidth: Optical Fiber/QSFP+ transceiver → up to 2 Gbps (Not a bottleneck)
- 988 APVs in total, so total event size : ~1.5 MBytes / event
- Distributed to 3 VXS crates: ~0.5 MBytes per crate
- VXS bandwidth 20 Gbps (2.5 GB/s): max trigger rate ~5 KHz
- Data rate further reduced with online zero suppression
- GEp will implement the Calorimeter-cluster-based-cut algorithm on VTP FPGA firmware to further reduce the data rate

SBS GEM MPD modules in VME Crates

Readout Electronics for the SBS GEM detectors

- 128 analog ch / APV25 ASIC
- 3.4 us trigger latency (analog pipeline)
- Capable of sampling signal at 40 MHz
 - Multiplexed analog output (100 kHz readout rate)

MPD (multi-purpose digitizer) designed for SBS program

- Up to 16 APV25 cards (2048 chs) on a single MPD board (parallel readout) \succ
- Altera Arriga Gx FPGA/RAM: DDR2 (128 MB) \succ
- **Optical Fiber Link Interface (Aurora ~2 Gbps peak)** \succ
- 110 MHz system clock and Front panel coax clock \succ
- \succ Used HDMI-A for analog and digital signals
- \succ VME/32, VME64, VME-VXS compliant (up to 200 MB/s peak)
- 4 high speed line on the VXS available for data transfer \succ
- Firmware v. 4.0 (74% resources): \succ
 - Finite-Impulse-Response Filter (16 parameters) 0
 - Zero Suppression (sparse readout) 0
 - **Remote Configuration** 0
 - ~2 ns trigger time resolution 0
 - VME/Optical Fiber simultaneous implementation 0

21

Data Path for the SBS GEM Detectors

- Easy distribution of trigger or low jitter clock to all modules in the crate
- More computing resources: powerful on-bard FPGA Xilinx Vertex 7 FPGA
- Linux OS on the Zync 7030 SOC

Plots Courtesy of Ben Raydo – JLab

SBS GEM Detector Overall Performance

- Stable operation for 3-years-long continuous running
- Overall efficiency > 80% from tracking (preliminary results)

Layer 4

Layer 3, Efficiency = 86.6165

Layer 4, Efficiency = 88.7098

Dec. 6, 2023

RD51 Collaboration Meeting

Beamtest for Thin-Gap GEM Prototype at Fermilab

- Resolution and efficiency for Thin-Gap GEM prototypes tested at Fermilab using 120 GeV proton beam
- □ Thin-Gap can significantly improve position resolution at large scattering angle (45 degree)
- Did not see a significant efficiency drop on Thin-Gap prototypes
 - Efficiency drop can be further mitigated by a better HV design, a heavier working gas: KrCO2

