

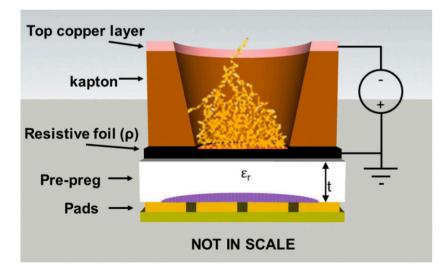
Update on Technology Transfer of high rate µ-RWELL

Matteo Giovannetti [LNF-INFN]

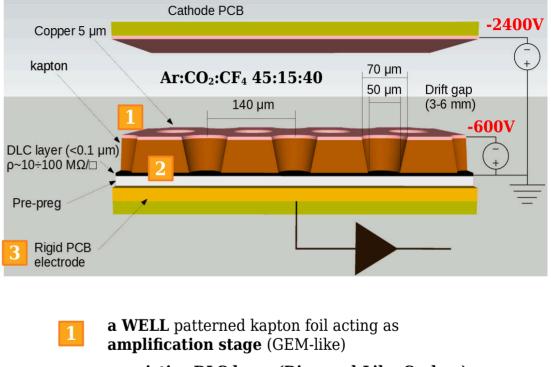
on behalf of LNF-INFN (leading group) Bologna-Ferrara INFN teams R. De Oliveira – CERN-EP-DT-MPT Workshop R. Pinamonti, M. Pinamonti – ELTOS S.p.A.

RD51 - WG6, CERN, Dec. 6th 2023

This research has been supported by the E.U. Project AIDAInnova Task 7.3 (European Union's Horizon 2020 Research and Innovation programme, grant agreement N.101004761)

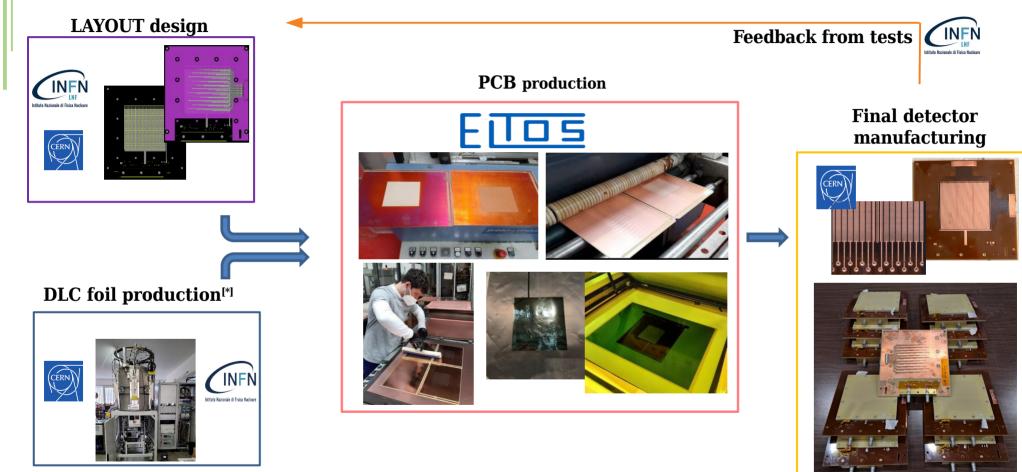

L2=101.71u

13=55 140


L7=48,18µr

The µ-RWELL detector [reminder]

The μ -RWELL is a Micro Pattern Gaseous Detector (MPGD) composed of only two elements: the μ -RWELL_PCB and the cathode. **The core is the \mu-RWELL_PCB**, realized by coupling three different elements:


Applying a suitable voltage between the **top Cu-layer and the DLC** the WELL acts as a **multiplication channel for the ionization** produced in the conversion/drift gas gap.

- a **resistive DLC layer (Diamond-Like-Carbon)** for discharge suppression with surface resistivity $\sim 50 \div 100 \text{ M}\Omega/\Box$
- a standard readout PCB

µ-RWELL Technology Transfer [flow chart]

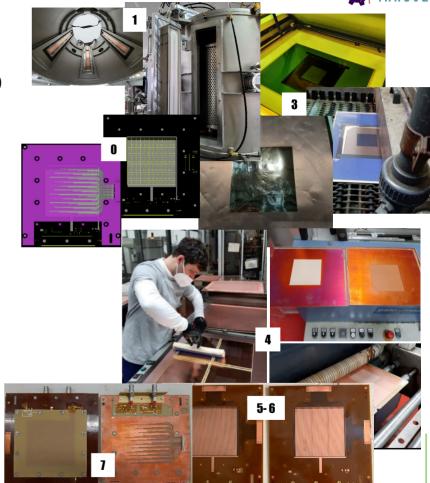
[*] DLC Magnetron Sputtering machine co-funded by INFN- CSN1

06/12/23

Last RD51 - M. Giovannetti - µ-RWELL Technology Transfer

µ-RWELL Technology Transfer 2023

FILOS


INFN

Step 0 - Detector PCB design @ LNF + CERN-MPT

Step 1 - CERN_INFN **DLC sputtering machine** @ CERN (+INFN)

- In operation since Nov. 2022
- Production by LNF-INFN crew

This research has been supported by the E.U. Project AIDAInnova Task 7.3 (European Union's Horizon 2020 Research and Innovation programme, grant agreement N.101004761) 06/12/23 Last RD51 - M. Giovannetti - µ-RWELL Technology Transfer

µ-RWELL Technology Transfer 2023

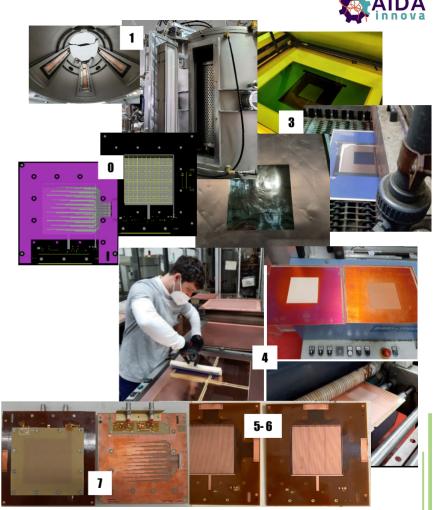
Step 0 - Detector PCB design @ LNF + CERN-MPT

Step 1 - CERN_INFN **DLC sputtering machine** @ CERN (+INFN)

- In operation since Nov. 2022
- Production by LNF-INFN crew

Step 2 – Producing readout PCB by ELTOS

• pad/strip readout


INFN

Step 3 - **DLC patterning** by ELTOS

photo-resist \rightarrow patterning with BRUSHING-machine

Step 4 - **DLC foil gluing** on PCB by ELTOS

Large press available, up to 16 PCBs workable at the same time

This research has been supported by the E.U. Project AIDAInnova Task 7.3 (European Union's Horizon 2020 Research and Innovation programme, grant agreement N.101004761) 06/12/23 Last RD51 - M. Giovannetti - µ-RWELL Technology Transfer

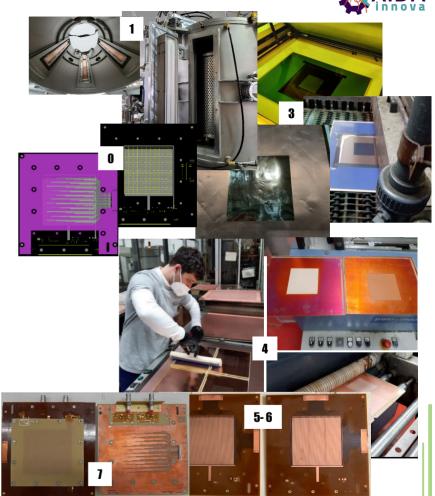
µ-RWELL Technology Transfer 2023

- Step 0 Detector PCB design @ LNF + CERN-MPT
- Step 1 CERN_INFN **DLC sputtering machine** @ CERN (+INFN)
- In operation since Nov. 2022
- Production by LNF-INFN crew
- Step 2 Producing readout PCB by ELTOS
- pad/strip readout

- Step 3 **DLC patterning** by ELTOS
 - photo-resist \rightarrow patterning with BRUSHING-machine

Step 4 - **DLC foil gluing** on PCB by ELTOS

Large press available, up to 16 PCBs workable at the same time


Step 5 - Ground network connections creation by CERN

PEP layout: Cu **P**atterning \rightarrow PI **E**tching \rightarrow Cu **P**lating

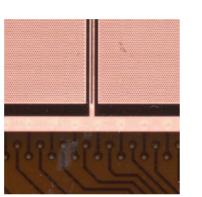
Step 6 - Amplification stage patterning by CERN

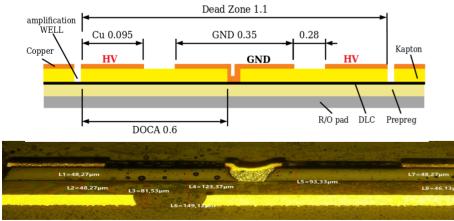
- Cu amplification holes image and HV connections by Cu etching
- PI etching \rightarrow plating \rightarrow amplification-holes

Step 7 - Electrical cleaning and detector closing @ CERN

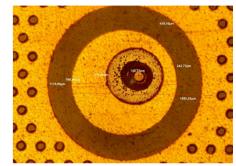
This research has been supported by the E.U. Project AIDAInnova Task 7.3 (European Union's Horizon 2020 Research and Innovation programme, grant agreement N.101004761) 06/12/23 Last RD51 - M. Giovannetti - µ-RWELL Technology Transfer

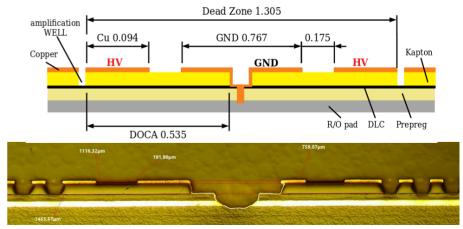
High-rate layout optimisation



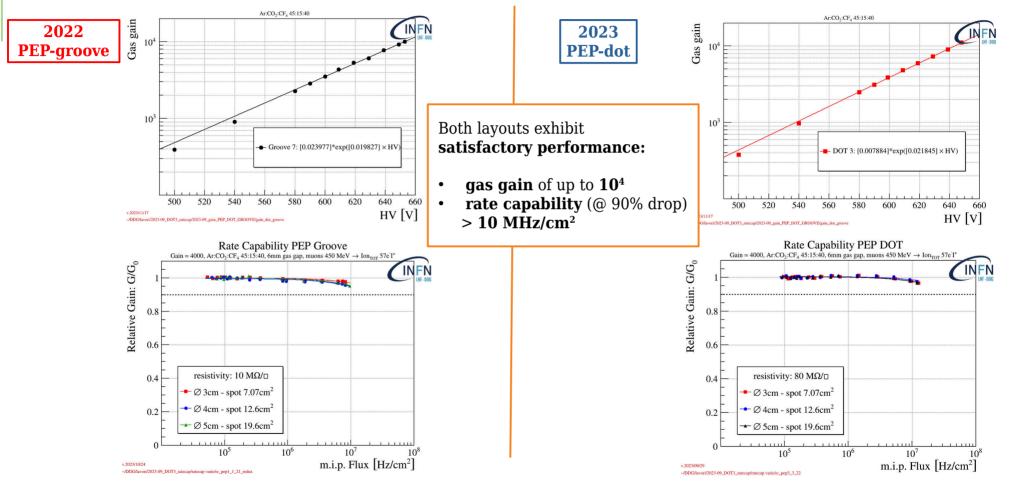

The GOAL: **minimizing** the average **path towards the ground** connection by introducing a **high-density grounding network** on the DLC layer. In **PEP** (Patterning-Etching-Plating) layouts the top Cu layer is connected to the DLC, plating through the APICAL foil.

DLC grounding by **conductive groove** Pad R/O = 9×9 cm² Grounding: - pitch = 9.0 mm - width = 1.1 mm


 \rightarrow 84% geometric acceptance

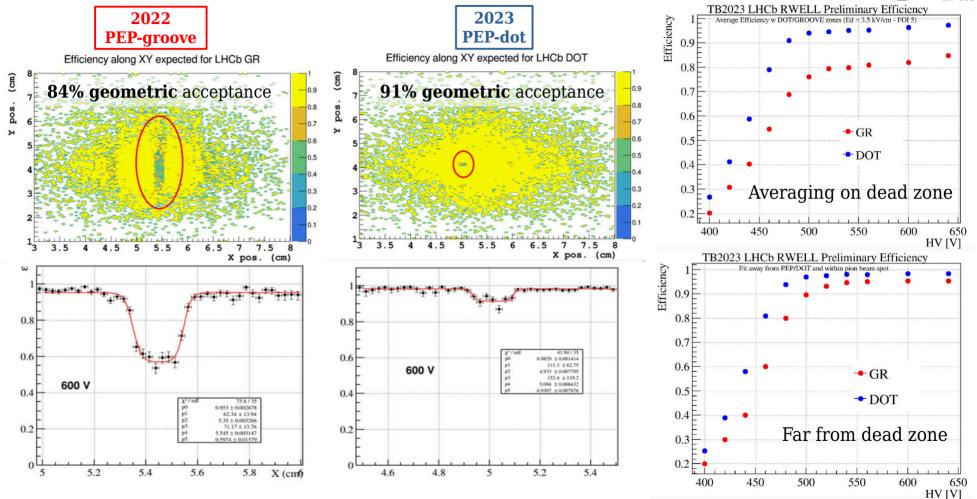


DLC grounding by **conductive DOT** Pad R/O = $9 \times 9 \text{cm}^2$ Grounding: - pitch = 9.0 mm - rim = 1.3 mm


 \rightarrow 97% geometric acceptance

Last RD51 - M. Giovannetti - µ-RWELL Technology Transfer

High-rate layout optimisation



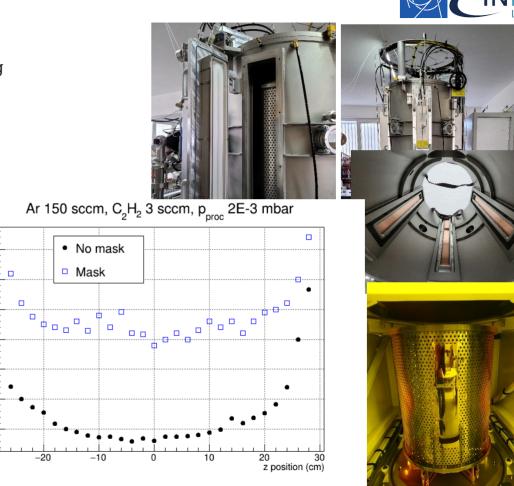
Last RD51 - M. Giovannetti - µ-RWELL Technology Transfer

BT'23 [APV25]: Groove-DOT layouts comparison

Last RD51 - M. Giovannetti - µ-RWELL Technology Transfer

The CERN-INFN DLC machine

 $\begin{array}{l} \textbf{31^{st} Oct. 2022 - Delivered} \\ \textbf{31^{st} Oct. - 4^{th} Nov. 2022 - Commissioning & test training \\ \textbf{21^{st} - 23^{rd} Nov. 2022 - 1^{st} DLC sputtering test} \\ & Ar + N_2 \ doping \\ \textbf{19^{th} - 28^{th} Jun. 2023 - 2^{nd} DLC sputtering test} \\ & Ar + N_2 \ doping \ (\% \ and \ P \ scan) \\ \textbf{25^{th} Place} \end{array}$


- $25^{\rm th}$ $29^{\rm th}$ Sep. 2023 $3^{\rm rd}$ DLC sputtering test
 - Ar + C_2H_2 doping
- $6^{\rm th}$ $10^{\rm th}$ Nov. 2023 $4^{\rm th}$ DLC sputtering test
 - Ar + C₂H₂ doping (uniformity test)

Technical features:

- Flexible substrates up to 1.7m×0.6m
- **Rigid** substrates up to 0.2m×0.6m

Five cooled target holders, arranged as two pairs face to face and one on the front, equipped with five shutters.

CID allows to **sputter** or **co-sputter different materials**, to create a coating layer by layer or an adjustable **gradient** in the coating.

Thanks to Rui, Serge, Givi and Gianfranco – more details in this talk

p (MΩ/D)

300

250

200

150

The CERN-INFN DLC machine

 $\begin{array}{l} \textbf{31^{st} Oct. 2022} - \text{Delivered} \\ \textbf{31^{st} Oct. - 4^{th} Nov. 2022} - \text{Commissioning \& test training} \\ \textbf{21^{st} - 23^{rd} Nov. 2022} - 1^{st} \text{ DLC sputtering test} \\ & \text{Ar} + N_2 \text{ doping} \\ \textbf{19^{th} - 28^{th} Jun. 2023} - 2^{nd} \text{ DLC sputtering test} \\ & \text{Ar} + N_2 \text{ doping (\% and P scan)} \\ \textbf{25^{th} - 29^{th} Sep. 2023} - 3^{rd} \text{ DLC sputtering test} \\ & \text{Ar} + C_{s} H_{s} \text{ doping} \end{array}$

- Ar + C_2H_2 doping
- 6^{th} 10^{th} Nov. 2023 4^{th} DLC sputtering test
 - Ar + C₂H₂ doping (uniformity test)

Technical features:

- Flexible substrates up to 1.7m×0.6m
- **Rigid** substrates up to 0.2m×0.6m

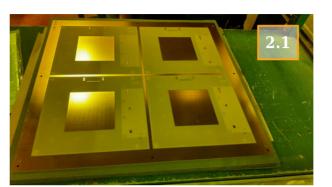
Five cooled target holders, arranged as two pairs face to face and one on the front, equipped with five shutters.

CID allows to **sputter** or **co-sputter different materials**, to create a coating layer by layer or an adjustable **gradient** in the coating.

Thanks to Rui, Serge, Givi and Gianfranco - more details in this <u>talk</u>

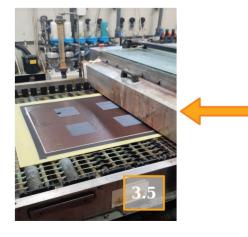
2023 Stable and uniform DLC resistivity w/ Ar+C₂H₂ Ar 150 sccm, $C_{2}H_{2}$ 3 sccm, p_{proc} 2E-3 mbar No mask 350 Mask 300 250 200 150 100 -20-1010 20 z position (cm) Sputtering large foils!! 2024

p (MΩ/D)


WP7.3.2: Mar.'23 ELTOS production – DLC patterning E

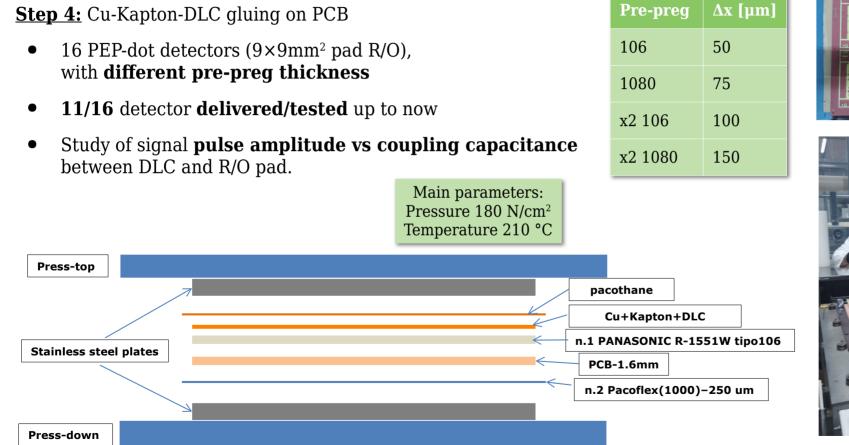
<u>Step 2:</u>

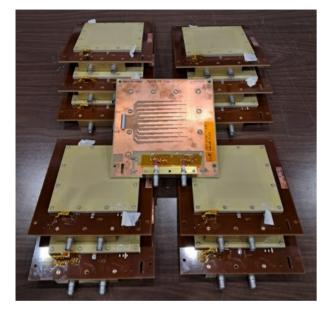
1) R/O PCB production


<u>Step 3:</u>

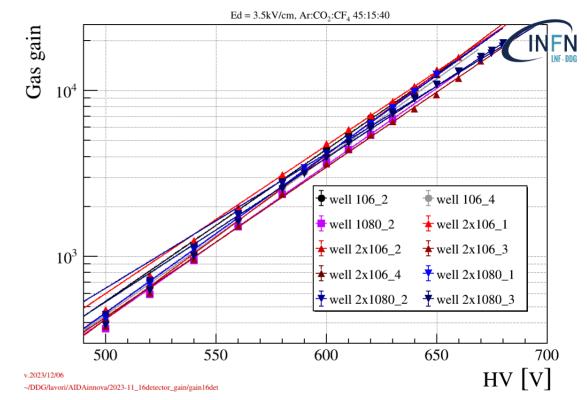
- 2) Photoresist lamination for DLC protection
- 3) Photoresist UV-**exposure**
- 4) Photoresist **development**
- 5) **DLC patterning** with brushing machine (@CERN different approach: JET-SCRUBBING)

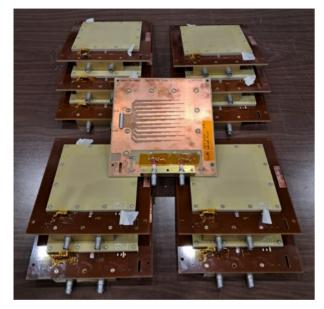
DLC Kapton Cu

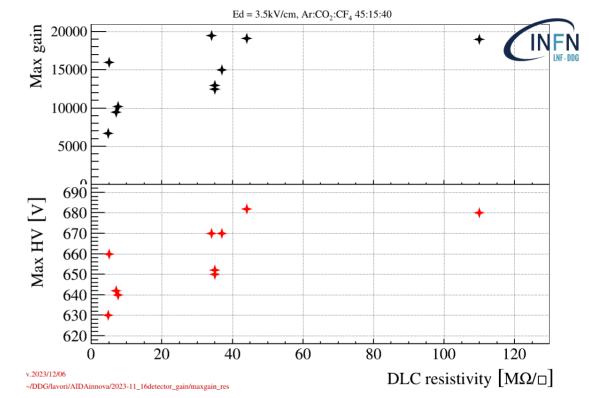


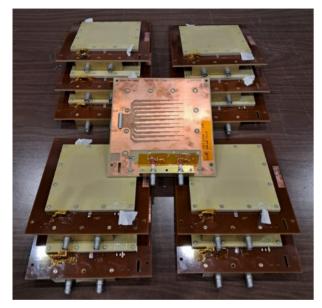

Last RD51 - M. Giovannetti - µ-RWELL Technology Transfer

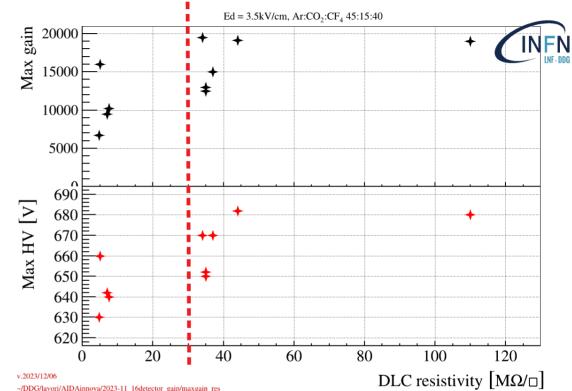
WP7.3.2: Mar.'23 ELTOS production – DLC-foil gluing

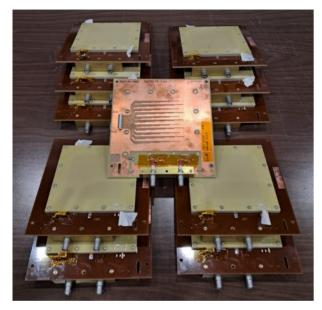





- 11/16 co-produced protos have been delivered and tested
- 10 are fine \rightarrow 90% yield
- 1 should be re-cleaned Waiting for the delivery of last 5 protos


- Characterized with **X-ray gun** → **Gas gain** measurement
- Next step: measure of the pulse amplitude (APV25) vs Gas gain


- **11/16** co-produced protos have been **delivered** and **tested**
- 10 are fine \rightarrow 90% yield
- 1 should be re-cleaned
 Waiting for the delivery of last 5 protos


- Characterized with **X-ray gun** → **Gas gain** measurement
- Next step: measure of the pulse amplitude (APV25) vs Gas gain

- **11/16** co-produced protos have been **delivered** and **tested**
- 10 are fine \rightarrow 90% yield
- 1 should be re-cleaned
 Waiting for the delivery of last 5 protos

- Characterized with **X-ray gun** → **Gas gain** measurement
- Next step: measure of the pulse amplitude (APV25) vs Gas gain

- **11/16** co-produced protos have been **delivered** and **tested**
- 10 are fine \rightarrow 90% yield
- 1 should be re-cleaned
 Waiting for the delivery of last 5 protos

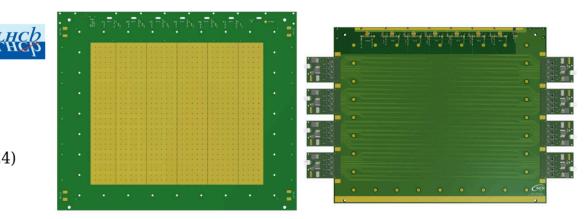
Detector #	Prepreg type	DLC resistivity	Production status	Max HV/Gain	comments
106_1	1x 106		Cleaning		@ CERN
106_2	1x 106	7.5	Delivered	640/10000	
106_3	1x 106		Cleaning		@ CERN
106_4	1x 106	7	Delivered	640/9500	
1080_1	1x1080		Cleaning		@ CERN
1080_2	1x1080	4.8	Delivered	630/6700	
1080_3	1x1080	5	Delivered	n.a.	To be re-cleaned
1080_4	1x1080		Cleaning		@ CERN
2x106_1	2x106	35	Delivered	660/16000	
2x106_2	2x106	37	Delivered	650/13000	
2x106_3	2x106	35	Delivered	670/15000	
2x106_4	2x106	34	Delivered	650/12500	
2x1080_1	2x1080	33	Delivered	670/19500	
2x1080_2	2x1080	110	Delivered	680/19000	
2x1080_3	2x1080	44	Delivered	680/19000	
2x1080_4	2x1080		Cleaning		@ CERN

Status and plans – '23

- **Optimization** of high-rate µ-RWELL layout **10x10cm**² active area, 9x9mm² pad, **DOT DLC connection**
- Beam test (NA H8C, June, 2023) Groove DOT comparison (developed and tested in 2022) w/ APV25

Tests of **co-production ELTOS/CERN** and **DLC sputtering machine** @ CERN (tests will continue also in 2024)

.


٠

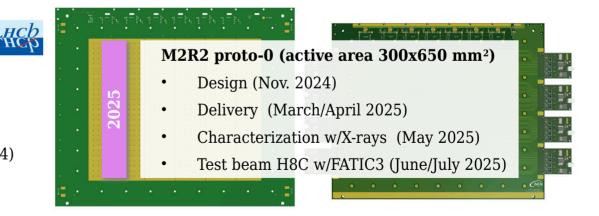
Status and plans – '23, '24

- **Optimization** of high-rate µ-RWELL layout **10x10cm**² active area, 9x9mm² pad, **DOT DLC connection**
- Beam test (NA H8C, June, 2023) Groove DOT comparison (developed and tested in 2022) w/ APV25
- Tests of **co-production ELTOS/CERN** and **DLC sputtering machine** @ CERN (tests will continue also in 2024)
- Irradiation test with X-ray @ LNF of the 100x100mm² DOT-layout prototypes
 - GIF++ irradiation test with μ -beam in collaboration with CERN gas group
 - **Integration of electronics based on the FATIC3 chip** (n.100 chip 32chs with multi-project run Jan. 2024).

M2R1 proto-0 (active area 250x300 mm²)

- Designed & discussed w/Rui (Oct./Nov. 2023)
- Delivery (March 2024)
- Characterization w/X-rays (April/May 2024)
- Cosmic rays stand w/APV25 (June Sept 2024)
- Test beam H8C w/FATIC3 (Oct.2024)

2024


٠

Status and plans – '23, '24, '25

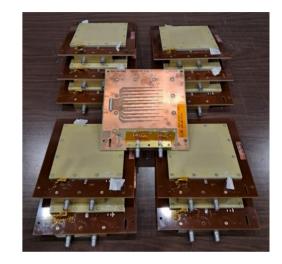
- **Optimization** of high-rate µ-RWELL layout **10x10cm**² active area, 9x9mm² pad, **DOT DLC connection**
- Beam test (NA H8C, June, 2023) Groove DOT comparison (developed and tested in 2022) w/ APV25
- Tests of **co-production ELTOS/CERN** and **DLC sputtering machine** @ CERN (tests will continue also in 2024)
- Irradiation test with X-ray @ LNF of the 100x100mm² DOT-layout prototypes
 - GIF++ irradiation test with μ -beam in collaboration with CERN gas group
 - **Integration of electronics based on the FATIC3 chip** (n.100 chip 32chs with multi-project run Jan. 2024).

M2R1 proto-0 (active area 250x300 mm²)

- Designed & discussed w/Rui (Oct./Nov. 2023)
- Delivery (March 2024)
- Characterization w/X-rays (April/May 2024)
- Cosmic rays stand w/APV25 (June Sept 2024)
- Test beam H8C w/FATIC3 (Oct.2024)

2024

٠

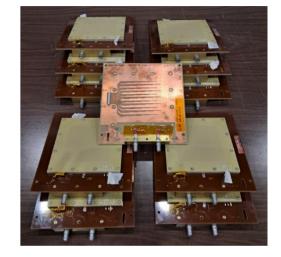

Summary

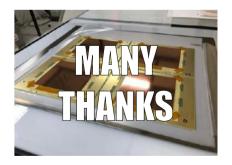
The TT of a part of μ -RWELLs construction steps to ELTOS Company, in close collaboration with the CERN MPT Workshop has been successfully completed (yield ~ 90%):

- Several construction steps performed by ELTOS
- Detector finalization (Kapton etching, electrical hot cleaning ...) done at CERN

The **R&D with CERN** on **high-rate layouts** will be **finalized within 2024**:

- **Design/optimization** of the high-rate layout → **PEP-Dot**, 97% geom. acceptance (**DONE**)
- Optimizing main detector parameters:
 - \circ ρ_s ≥ 30-40 MΩ/□ → maximizing the gas gain (almost DONE)
 - Optimization of prepreg thickness
 → maximizing collected signal (within 2023)
 - **Optimization of the amplification stage geometry** \rightarrow maximizing the gas gain (2024)
- Large size high-rate layout (M2R1 ...) construction/test (April Oct. 2024)


Summary

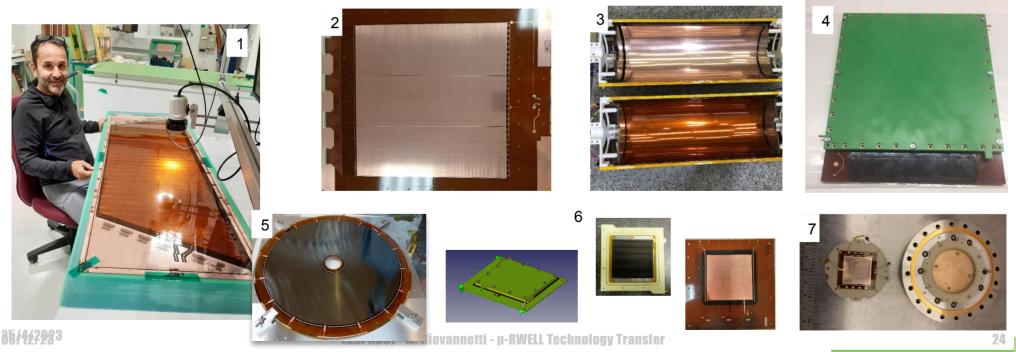

The **TT** of a part of μ -RWELLs construction steps to **ELTOS** Company, in close **collaboration** with the **CERN MPT** Workshop **has been successfully completed (yield ~ 90%)**:

- Several construction steps performed by ELTOS
- Detector finalization (Kapton etching, electrical hot cleaning ...) done at CERN

The **R&D with CERN** on **high-rate layouts** will be **finalized within 2024**:

- **Design/optimization** of the high-rate layout → **PEP-Dot**, 97% geom. acceptance (**DONE**)
- Optimizing main detector parameters:
 - \circ ρ_s ≥ 30-40 MΩ/□ → maximizing the gas gain (almost DONE)
 - Optimization of prepreg thickness
 → maximizing collected signal (within 2023)
 - **Optimization of the amplification stage geometry** \rightarrow maximizing the gas gain (2024)
- Large size high-rate layout (M2R1 ...) construction/test (April Oct. 2024)

Spare

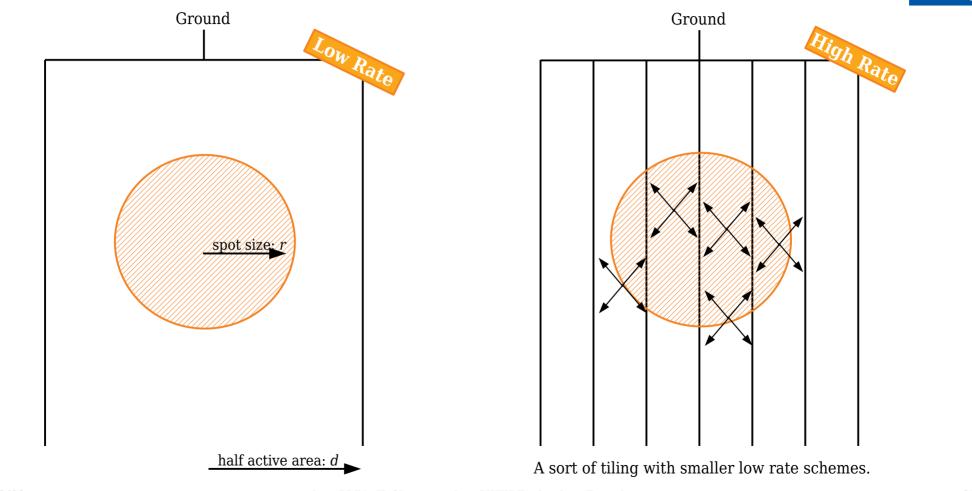

- G. Bencivenni et al., The micro-Resistive WELL detector: a compact spark-protected single amplification-stage MPGD, 2015 JINST 10 P02008
- G. Bencivenni et al., The µ-RWEL detector, 2017 JINST 12 C06027
- G. Bencivenni et al., Performance of µ-RWELL detector vs resistivity of the resistive stage, Nucl. Instrum. Meth. A 886 (2018) 36.
- G. Bencivenni et al., *The µ*-*RWELL layouts for high particle rate*, 2019 *JINST* **14** P05014
- G. Bencivenni et al., On the space resolution of the µ-RWELL, 2020 JINST 16 P08036
- A. Ochi et al., Carbon sputtering Technology for MPDG detectors, PoS(TIPP2014)351 (2014).

µ-RWELL technology spread

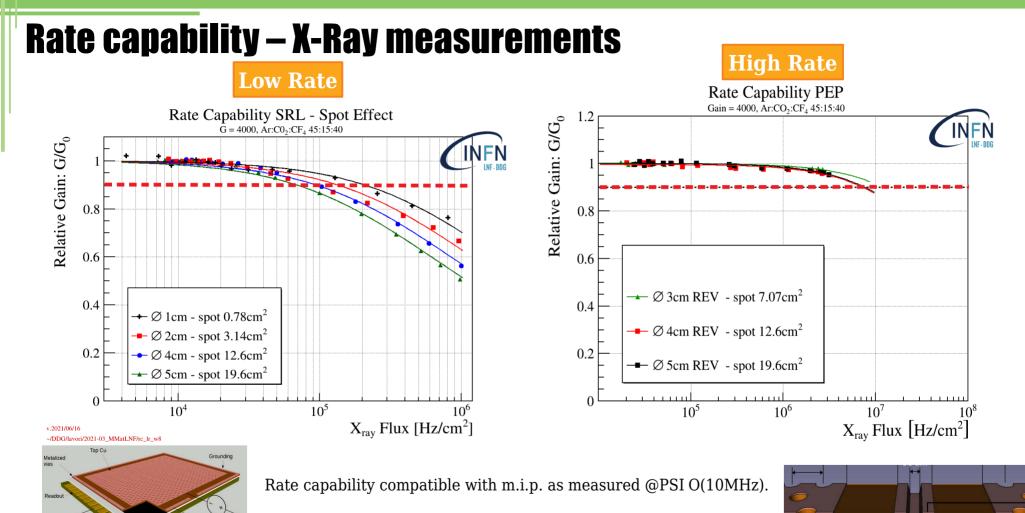
The $\mu\text{-RWELLs}$ are proposed in

- 1. CLAS12 @ JLAB: the upgrade of the muon spectrometer
- 2. X17 @ n_TOF EAR2: for the amplification stage of a TPC dedicated to the detection of the X17 boson
- 3. TACTIC @ YORK Univ.: radial TPC for detection of nuclear reactions with astrophysical significnace
- 4. Muon collider: hadron calorimeter
- 5. CMD3: uRWELL Disk for the upgrade of the tracking system
- 6. URANIA-V: a project funded by INFN-CSN5 for neutron detection,
- 7. UKRI: neutron detection with pressurized ³He-based gas mixtures

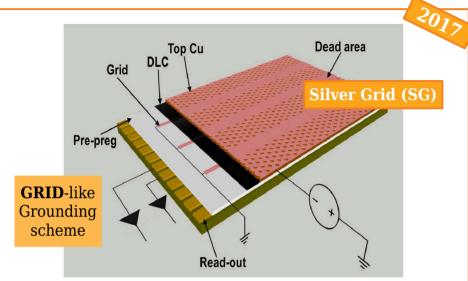
The High Rate layouts

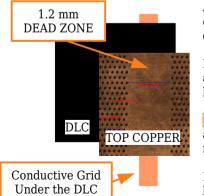

To overcome **the intrinsic limitation** of the Single Resistive layout with edge grounding the solution is to reduce as much as possible the paths towards the ground connection introducing high density а "grounding network" the on resistive stage of the detector.

Single Resistive Layout (SRL) Top Cu Grounding Metalized vias Readout DLC Pre-preg


Different layouts with a "dense grounding network scheme" have been designed and implemented.

The High Rate layouts

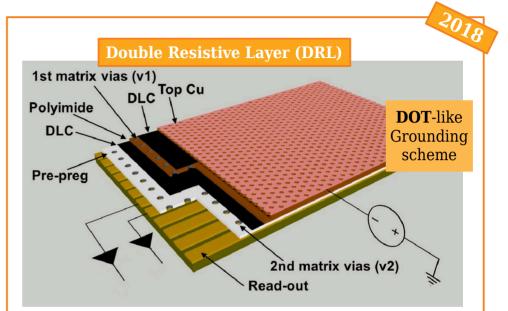

Last RD51 - M. Giovannetti - µ-RWELL Technology Transfer



Different primary ionization \Rightarrow **Rate Cap**_{m.i.p.} = 3×Rate Cap_{X-ray}

Last RD51 - M. Giovannetti - µ-RWELL Technology Transfer

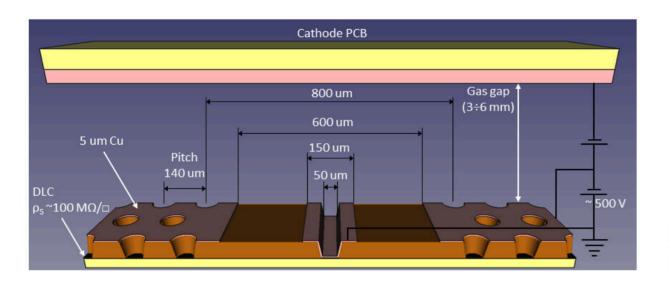
The High Rate layouts


06/12/23

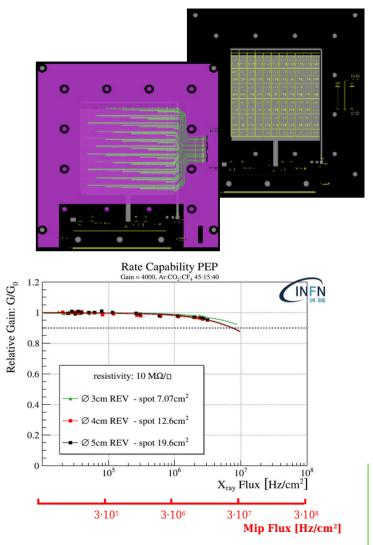
A conductive grid is patterned on the back of special DLC foils (DLC + Cu technology: delicate manufacturing process).

Necessity to introduce a **small DEAD AREA** above the grid, to avoid discharges (tuned to be 5% of the total area).

NOT SCALABLE to large size: distortions and alignment problems **during manufacturing**.


IS POSSIBLE to **check the resistance** of the layer after the detector is built

Based on a **3-D** current evacuation scheme: Two stacked resistive layer connected through a **matrix of conductive vias,** grounded through a further matrix of vias to the underlying readout electrodes.


MORE COMPLEX to buid **than SG** but reliable (for now only 10x10 prototypes). **NOT POSSIBLE to check the resistance** of the two layers after the manifacture.

The HR layout – PEP Groove

The **PEP** layout (Patterning – Etching – Plating) is the **state of art** of the **high rate** layout of the μ -RWELL developed **for LHCb**

- Single DLC layer
- **Grounding line from top** by kapton etching and plating (pitch down to 1/cm)
- No alignment problems
- High rate capability
- Scalable to large size (up to 1.2x0.5 m for the upgrade of CLAS12)

FATIC2 block diagram

Preamplifier features:

- CSA operation mode
- Input signal polarity: positive & negative
- Recovery time: adjustable

CSA mode:

- Programmable Gain: 10 mV/fC ÷ 50 mV/fC
- Peaking time: 25 ns, 50 ns, 75 ns, 100 ns

Timing branch:

- Measures the arrival time of the input signal
- ✓ Time jitter: 400 ps @ 1 fC & 15 pF (Fast Timing MPGD)

Charge branch:

- Acknowledgment of the input signal
- Charge measurement: dynamic range > 50 fC, programmable charge resolution