µ-RWELLs for IDEA experiment at FCC_ee

M. Poli Lener on behalf of

INFN BO, Fe, LNF , To

Future Circular Collider @ CERN

IDEA detector layout

- New, innovative, cost-effective concept
 - Silicon vertex detector
- Short-drift, ultra-light wire chamber
- Dual-readout calorimeter
- Thin solenoid coil *inside* calorimeter system
- Muon system made of 3 layers of uRWELL detectors in the return yoke

```
https://pos.sissa.it/390/
```

The **IDEA detector** is a general purpose detector designed for experiments at future e^+e^- colliders. **Pre-shower detector** and the Muon system are designed to be instrumented with μ -RWELL technology.

IDEA— $\mu\text{-}RWELL$ for pre-shower and muon apparatus

The **IDEA detector** is a general purpose detector designed for experiments at future e^+e^- colliders. **Pre-shower detector** and the Muon system are designed to be instrumented with μ -RWELL technology.

Pre-shower & Muon requirements:

Tiles: 50x50 cm² with X-Y readout

Efficiency \geq 98%

Space resolution ≤ 100 µm (Pre-shower)

≤ 400 μm (Muon)

Instrumented Surface/FEE:

130 m², 520 det., 3×10⁵ ch. (0.4 mm strip pitch) 1500 m²,1520 det., 5×10⁶ ch. (1.2 mm strip pitch)

Mass production \rightarrow Technology Trasfer to Industry

FEE Cost reduction → custom made ASIC (TIGER)

G. Bencivenni et al., The micro-Resistive WELL detector: a compact spark-protected single amplification-stage MPGD, 2015 JINST 10 P02008

The **µ-RWELL** is a **resistive MPGD** composed of two elements:

- Cathode
- μ-RWELL_PCB:

The µ-RWELL

- a WELL patterned kapton foil (w/Cu-layer on top) acting as amplification stage
- a resisitive DLC layer^(*) w/ ρ ~10÷100 M Ω / \Box
- a standard readout PCB with pad/strip segmentation

(*) DLC foils are currently provided by the Japan Company – BeSputter

The **"WELL"** acts as a **multiplication channel** for the ionization produced in the drift gas gap.

The **resistive stage** ensures the **spark amplitude quenching**. **Drawback:** capability to stand high particle fluxes reduced, but **largely recovered** with appropriate **grounding schemes** of the **resistive layer**

u-RWELL R&D for FCC_ee

u-RWELL R&D for FCC

IFN

R&D for FCC: 1D R/out

Resistivity Scan @ fixed pitch

Active area= 400x50 mm2Pre-preg thickness= 50 umResistivity= $10 \div 80 \text{ M}\Omega$ / Strip pitch= 0.4 mmStrip width = 0.150 mmRatio p/w= 2.66

(b) Strip cluster size for different HV.

RD-FCC u-RWELL, Residuals test resolution - 75ADC threshold

Ar:CO.;CF, 45:15:40

(a) Cluster charge for different HV.

(c) Tracking efficiency for different HV.

(d) Residuals width for different HV.

Same performance except the 10 M Ω / proto Efficiency knee @ 550 V, $\sigma_x < 100$ um

RD51 Collaboration Meeting

R&D for FCC: 1D R/out

680

680

(c) Tracking efficiency for different HV.

(d) Residuals width for different HV.

Larger is the strip pitch, lower is the charge signal requiring a higher gain to reach full efficiency.

Efficiency knee @ 600 V & σ_x < 400 um for a strip pitch = 1.6 mm A high p/w ratio implies a worsening of the detector performance

Active area = 400x50 mm2 Pre-preg thickness= 50 um Resistivity= 30 M Ω / Strip pitch= 0.4-1.6 mm Strip width = 0.15 mm p/w ratio= 2.66 – 10.66

The 1D proto show very good performace @ 500 V to be compared with 2D ones (TB 2023) Efficiency knee @ 500 V & $\sigma x < 200$ um for a strip pitch ~ 0.8 mm

R&D for FCC: 1D R/out

FCC Muon

protos

CHARGE [a.u.] 2000 2000 2000

1500

1000

500

Efficiency [%] 0.8

0.6

0.4

0.2

400

400

450

.

450

Active area= 100x100 mm2 Pre-preg thickness= 20 um Resistivity= 50 M Ω / Strip pitch= 0.76 mm Strip width = 0.3 mm Ratio p/w= 2.53

2x1D uRWELL

2x1D performance

RWELL 2D «COMPASS» [*]

The «COMPASS» R/out requires higher gas gain due to the coupling of the X and Y R/out strips. Good perfomance No easy optimization of the charge sharing on X-Y views

(*) Y. Zhou et al. NIMA 927 (2019) 31

6/12/2023

11

The «COMPASS» R/out requires higher gas gain due to the coupling of the X and Y R/out strips Good perfomance No easy optimization of the charge sharing on X-Y views

(*) Y. Zhou et al. NIMA 927 (2019) 31 6/12/2023

RD51 Collaboration Meeting

The «COMPASS» R/out requires higher gas gain due to the coupling of the X and Y R/out strips Good perfomance No easy optimization of the charge sharing on X-Y views

(*) Y. Zhou et al. NIMA 927 (2019) 31

N.2 u-RWELLS 1D (2x1D) Y-strips Drift gap Common Cathode Drift gap

This option centainly allows to work at **lower gas gain** wrt the «COMPASS» R/out (X-Y r/out are decoupled)

X-strips

 \rightarrow TB2022 results:

- **IDEA pre-shower:** Efficiency knee @ 550 V, $\sigma_{\rm x}$ < 100 um with 0.4 mm strip pitch for the

- **IDEA Muon:** Efficiency knee @ 600 V & σ_x < 400 um for a strip pitch = 1.6 mm

6/12/2023

RD51 Collaboration Meeting

The «COMPASS» R/out requires higher gas gain due to the coupling of the X and Y R/out strips Good perfomance No easy optimization of the charge sharing on X-Y views

(*) Y. Zhou et al. NIMA 927 (2019) 31

This option centainly allows to work at **lower gas gain** wrt the «COMPASS» R/out (X-Y r/out are decoupled)

 \rightarrow TB2022 results:

- **IDEA pre-shower:** Efficiency knee @ 550 V, σ_x < 100 um with 0.4 mm strip pitch for the

- **IDEA Muon:** Efficiency knee @ 600 V & σ_x < 400 um for a strip pitch = 1.6 mm

RD51 Collaboration Meeting

The charge sharing structures: the charge transfer and charge sharing using capacitive coupling between a stack of layers of pads and the r/out board.

This technique offers the possibility to reduce the FEE channels, but the total charge is divided between the X & Y r/out (similar to the «COMPASS» R/out)

(*) K. Gnanvo et al. NIMA 1047 (2023) 167782

The «COMPASS» R/out requires higher gas gain due to the coupling of the X and Y R/out strips Good perfomance No easy optimization of the charge sharing on X-Y views

(*) Y. Zhou et al. NIMA 927 (2019) 31 6/12/2023

This option centainly allows to work at **lower gas gain** wrt the «COMPASS» R/out (X-Y r/out are decoupled)

 \rightarrow TB2022 results:

- **IDEA pre-shower:** Efficiency knee @ 550 V, $\sigma_{\rm x}$ < 100 um with 0.4 mm strip pitch for the

- IDEA Muon: Efficiency knee @ 600 V & $\sigma_{\rm x}$ < 400 um for a strip pitch

RD51 Collaboration Meeting

= 1.6 mm

The charge sharing structures: the charge transfer and charge sharing using capacitive coupling between a stack of layers of pads and the r/out board.

This technique offers the possibility to reduce the FEE channels, but the total charge is divided between the X & Y r/out (similar to the «COMPASS» R/out) The **TOP layout** centainly allows to work at **lower gas gain** wrt the «COMPASS» r/out (X-Y r/out are decoupled)

→ X coordinate on the TOP of the amplification stage introduces same dead zone in the active area

(*) K. Gnanvo et al. NIMA 1047 (2023) 167782

Drift gap

CS Readout board

Active area= $100 \times 100 \text{ mm2}$ Resistivity= $50 \text{ M}\Omega$ / Strip pitch= 1.2 mmStrip width = 1.1 mmSeveral layer between DLC and R/out

6/12/2023

Unift gap X-strips X coordinate on the TOP of the amplification stage

Active area= $100 \times 100 \text{ mm2}$ Resistivity= $50 \text{ M}\Omega$ / Strip pitch= 0.8 mmStrip width = 0.7 mmDead zone (TOP) ~ 15%Pre-preg thickness= 70 um

RD51 Collaboration Meeting

16 J

R&D for FCC: 2D R/out

An ugual charge sharing on the X-Y coordinates is shown for both 2D r/out

R&D for FCC: 2D R/out

An ugual charge sharing on the X-Y coordinates is shown for both 2D r/out

TOP r/o:

- The total charge isn't divided between X & Y view;
- Efficiency knee @ 500 V (such as 1D proto);
- Low efficiency plateau (~70%) due to dead zone
- Cluster Size does not change on X (TOP layer), while changing on the Y (due to the DLC spread);
- **Digital spatial resolution** on the X (Strip size ~ 1.5), strip Size>, improving on the Y (due to DLC spread)

650

HV [V]

650

HV [V]

R&D for FCC: 2D R/out

An ugual charge sharing on the X-Y coordinates is shown for both 2D r/out

TOP r/o:

- The total charge isn't divided between X & Y view;
- Efficiency knee @ 500 V (such as 1D proto);
- Low efficiency plateau (~70%) due to dead zone
- Cluster Size does not change on X (TOP layer), while changing on the Y (due to the DLC spread);
- Digital spatial resolution on the X (Strip size ~ 1.5), strip Size>, improving on the Y (due to DLC spread)

CS r/o:

- The total charge is divided between X & Y view;
- Efficiency knee @ 600 V;
- High efficiency plateau (~95%)
- Cluster size increase to 4 strips (Charge Sharing mechanism work)
- Spatial resolution improves at higher gain reaching 150 um with a strip pitch of 1.2 mm

Status and plans 2023

The 2023 program can be summarized in the following points:

- Finalization of the TB 2022 analysis (NA H8C, 4-20 October 2022) with μ-RWELL prototypes with 1D strip readout:
 100x100 mm2 area attiva & strip pitch 0.76 mm
 - 50x400 mm2 area attiva & strip pitch 0.4÷1.6 mm
- ✓ **Production of \mu-RWELL with** readout a strip 2D (100x100mm2 active area) the so called:
 - TOP r/out strip pitch 0.76 mm
 - Charge Sharing r/out strip pitch 1.2 mm
- ✓ Beam Test (NA H8C, 14-28 giugno 2023) of the previous layouts 2D. The test has been performed with the APV25
- Prototypes production 500x500 mm2 active area: layout TOP r/o with strip pitch of 1.2 mm (in order to minimize the dead area), while for the CS r/o, we do not consider necessary readout optimizations. The prorotypes will be ready for gen/feb-24. Test @LNF with X-ray & cosmic and afterwards a TB are foreseen.

Finalization of the TB 2023 analysis (NA – H8C, 14-28 giugno 2023) with **μ-RWELL proto with 2D strip** readout. Comparison of the 2D performance: proto layout 2D (CS & TOP) vs proto layout 2x1D

2024 Program

The 2024 program will be foreseen the following items:

- 1. Study gas gain optimization with different geometry of the amplification stage (pitch well, external/internal well diameters) with 100x100 mm2 prototypes. These studies have been performed with GEM detector but never with uRWELL \rightarrow with a reduction of the well pitch from 140 µm to 90 µm, a possible increase of the gas gain of about 2 is foreseen
- 2. Production of N.2 500x500 mm2 prototypes (second half of 2024): the choice of 2D layout will be based on the results obtained in the previous test. Test @LNF with X-ray & cosmic (with tracking system) will be performed.
- **3. Continuation** of testing of the **μRWELL production** processes at **ELTOS /CERN** and **DLC machine** at CERN (see Gianni and Gianfranco talks on Thursday)

Summary

- The μ -RWELL is becoming a mature device, also thanks to the technology spread that is giving an important boost to its development.
 - It is also considered for an upgrade of the LHCb Muon apparatus and for the spectrometer of CLAS12 Jlab (White paper for Snowmass), EIC, X17 @nTOF
- Preshower and muon detectors designed with the μ-RWELL technology
 - Studies aimed at defining the best DLC resistivity and strip pitch for the requested spatial resolution for preshower and muon system
 - % Good 2D μ -RWELL prototype performance has been measured and layout optimization has been adopted
 - % Production of the $\mu\textsc{-}RWELL$ layouts with the final active area
 - Continue partnership with ELTOS (preparation) and CERN (finalization) to complete technology transfer
- Ready for the final design for next FCC-ee descriptive document (2025-2027)

ĕ

	Phone: 77500 or 704	175
E10 3.3 E10	Comments (01–Nov–2021 13:29:30) Monday 01/11: Scrubbing started	

Thanks for your attention

RD51 Collaboration Meeting

spare slides

Capacitive-sharing readout: Principe & Motivation (K.GNAVO)

Principe of capacitive-sharing readout structures:

- ♦ Vertical stack of pads layers ⇒ Transfer of charge from MPGD via capacitive coupling
- A given arrangement of the pads position from one layer to the layer underneath as well as the doubling in size of the pad pitch allows:
 - Transverse sharing of the charges between neighboring pads of the layer (i+1)
 from vertical charged transfer from layer (i) through capacitive coupling
 - Principle of transverse charge-sharing through capacitive coupling i.e.,
 capacitive- sharing is illustrated on the cross-section sketch on the left
- The scheme preserves of the position information i.e. spatial resolution with large readout strips or pads: Goal 50 μm for 1-mm strip r/o and 150 μm for 1 cm² pad r/o
- Basic proof of concept established with 800 µm X-Y strip

Motivation & some key facts of capacitive-sharing readout:

- Develop high performance & low channel count readout structures for MPGDs:
- Reduce the number of readout electronic channels for large area MPGDs
- Low-cost technology for large area standard PCB fabrication techniques

