Jet Tagging in the Era of Deep Learning

Huilin Qu (CERN)

LPHE Seminar September 25, 2023

CMS Experiment at LHC, CERN Data recorded: Sat Aug 5 15:32:22 2017 CEST Run/Event: 300515 / 205888132

WHAT IS A JET?

Jet: a collimated spray of particles

CMS Experiment at LHC, CERN Data recorded: Sat Aug 5 15:32:22 2017 CEST Run/Event: 300515 / 205888132

CMS Experiment at LHC, CERN Data recorded: Sat Aug 5 15:32:22 2017 CEST Run/Event: 300515 / 205888132

JET TAGGING

- Jet tagging: identifying the origin of a jet, i.e., what kind of particle initiates the jet
 - essentially a classification task from the machine learning perspective

BOOSTED JET TAGGING

- distinctive characteristics:
 - different radiation patterns ("**substructure**")
 - 3-prong (top), 2-prong (W/Z/H) vs 1-prong (gluon/light quark jet)
 - different **flavor** content: existence of one or more b-/c-quarks
- Boosted jet tagging:
 - simultaneously exploiting both **substructure** and **flavor** to maximize the performance significant performance leap thanks to deep learning techniques

Hadronic decays of highly Lorentz-boosted heavy particles (Higgs/W/Z/top) lead to large-radius jets with

JET REPRESENTATION FOR DEEP LEARNING

JET REPRESENTATION

Jet

First and foremost: How to represent the data?

X

JET REPRESENTATION: IMAGE

Jet

- Convert to 2D/3D image => **Computer vision**
 - then use convolutional neural networks (CNNs)
 - but:
 - inhomogeneous geometry, high sparsity, ...

e.g., review in Kagan, arXiv:2012.09719

JET REPRESENTATION: SEQUENCE

Jet

- Convert to a sequence => Natural language processing (NLP)
 - recurrent neural network (RNN), e.g., GRU/LSTM; 1D CNNs; etc.

e.g., Guest, Collado, Baldi, Hsu, Urban, Whiteson arXiv: 1607.08633

Output

MLP

LSTM States

Input

DEEPAK8

Advanced deep learning-based algorithm for boosted jet tagging, using AK8 (anti-k_T R=0.8) jets

- **multi-class classifier** for top quark and W, Z, Higgs boson tagging
- **directly uses jet constituents** (particle-flow candidates / secondary vertices)
- **1D** convolutional neural network (CNN), based on the ResNet [arXiv: 1512.03385] architecture

DEEPAK8 PERFORMANCE

Significant performance improvement compared to traditional approaches

CMS, <u>|INST 15 (2020) P06005</u>

JET REPRESENTATION: SEQUENCE

Limitations

- - an ordering has to be *imposed* (p_T, distance, ...), which can limit the learning performance

while words are naturally ordered in natural languages, particles are intrinsically **unordered** in a collision event

POINT CLOUD

Point cloud

- an **unordered** set of points in space
 - typically produced by a LiDAR / 3D scanner
- spatial distribution of points
 - geometric structure of the objects

JET REPRESENTATION: PARTICLE CLOUD

Point cloud

From Wikipedia, the free encyclopedia

A **point cloud** is a set of data points in space. Point clouds are generally produced by **3D** scanners, which measure a large number of points on the external surfaces of objects around them.

Jet (Particle cloud)

From Wikipedia, the free encyclopedia

A jet (particle cloud) is a set of particles in space. Particle clouds are generally created by clustering a large number of particles measured by particle detectors, e.g., $\mathcal{P}_{\text{EXPERIMENT}}$ and $\mathcal{P}_{\text{EXPERIMENT}}$.

PARTICLENET

- ParticleNet: jet tagging via particle clouds
 - treating a jet as an **unordered set of particles**, distributed in the $\eta \phi$ space
 - graph neural network architecture, adapted from Dynamic Graph CNN [arXiv:1801.07829]
 - treating a point cloud as a graph: each point is a vertex
 - for each point, a local patch is defined by finding its k-nearest neighbors
 - designing a permutation-invariant "convolution" function

H. Qu and L. Gouskos Phys.Rev.D 101 (2020) 5,056019

ParticleNet architecture

PARTICLENET: PERFORMANCE

Top performance among a variety of deep learning taggers on the community-wide top tagging benchmark

	$ AUC Acc 1/\epsilon_B (\epsilon_S = 0.3) =$						#Param
				single	mean	median	
	CNN [16]	0.981	0.930	$914{\pm}14$	$995{\pm}15$	975 ± 18	610k
	ResNeXt $[30]$	0.984	0.936	1122 ± 47	1270 ± 28	1286 ± 31	$1.46\mathrm{M}$
	TopoDNN [18]	0.972	0.916	295 ± 5	$382\pm$ 5	378 ± 8	59k
Architecture	Multi-body N -subjettiness 6 [24]	0.979	0.922	792 ± 18	$798{\pm}12$	808 ± 13	57k
used by DeepAK8	Multi-body N -subjettiness 8 [24]	0.981	0.929	867 ± 15	$918{\pm}20$	$926{\pm}18$	58k
	TreeNiN [43]	0.982	0.933	1025 ± 11	1202 ± 23	1188 ± 24	34k
	P-CNN	0.980	0.930	732 ± 24	845 ± 13	834 ± 14	348k
	ParticleNet [47] (Preliminary ver.)	0.985	0.938	$1298 {\pm} 46$	$1412{\pm}45$	$1393 {\pm} 41$	498k
	LBN [19]	0.981	0.931	$836{\pm}17$	$859{\pm}67$	$966{\pm}20$	705k
	LoLa [22]	0.980	0.929	722 ± 17	768 ± 11	765 ± 11	127k
	Energy Flow Polynomials [21]	0.980	0.932	384			1k
Ensemble of	Energy Flow Network $[23]$	0.979	0.927	633 ± 31	729 ± 13	$726{\pm}11$	82k
all taggers	Particle Flow Network [23]	0.982	0.932	891 ± 18	1063 ± 21	1052 ± 29	82k
	GoaT	0.985	0.939	$ 1368 \pm 140$		1549 ± 208	35k
	ParticleNet-Lite	0.984	0.937	1262±49			26k
	ParticleNet	0.986	0.940	1615±93			366k

BOOSTED JET TAGGING IN ACTION

CORRELATION WITH THE JET MASS

One feature of these taggers is the correlation with the jet mass

- desirable:

. . .

jet mass shape of the background becomes similar to that of the signal after selection with the tagger: "mass sculpting"

not necessarily a problem, but a mass-independent tagger is often more

allows to use the mass variable to further separate signal and background enables tagging signal jets with an unknown mass

DECORRELATION WITH THE JET MASS

PERFORMANCE COMPARISON

CMS DP-2020/002

- ParticleNet-MD
 - using a special signal sample for training
 - hadronic decays of a spin-0 particle X

$$X \rightarrow bb, X \rightarrow cc, X \rightarrow qq$$

- not a fixed mass, but a flat mass spectrum
 - $m(X) \in [15, 250] \text{ GeV}$
- allows to easily reweight both signal and background to a ~flat 2D distribution in (p_T , mass) for the training

ParticleNet-MD shows the best performance

- ~3-4x better background rejection compared to DeepAK8-MD (based on "adversarial training")
- only slight performance loss compared to the nominal version w/o mass decorrelation

MASS REGRESSION

- Jet mass: one of the most powerful observables for boosted jet tagging
 - characteristic mass peak for top/W/Z/H jets v.s. continuum for QCD jets
- Mass regression:
 - exploit deep learning to reconstruct jet mass with the highest possible resolution
 - training setup similar to the ParticleNet tagger
 - but: predict the jet mass directly from the jet consitituents
- Regression target:
 - signal (X \rightarrow bb/cc/qq): generated particle mass of X [flat spectrum in 15 250 GeV]
 - background (QCD) jets: soft drop mass of the generated particle-level jet
- Loss function

LogCosh:
$$L(y, y^p) = \sum_{i=1}^n \log(\cosh(y_i^p - y_i))$$

lecturenotes/lecturenote | 0.html

MASS REGRESSION: PERFORMANCE

~20-25% improvement in the final sensitivity for $H \rightarrow bb / H \rightarrow cc$ analyses

<u>CMS DP-2021/017</u>

SEARCH FOR $H \rightarrow CC$

- Search for the Higgs boson decay to a pair of charm quarks
 - next milestone in Higgs physics couplings to second generation quarks
 - extremely challenging at the LHC:
 - small branching fraction (~3%) vs enormous backgrounds; difficulty in charm tagging
- $H \rightarrow cc$ search at CMS
 - targets WH/ZH production, with 3 channels: $Z \rightarrow vv$ (0L), $W \rightarrow v$
 - two complementary approaches to fully explore the $H \rightarrow cc$ decay topologies

$$\ell v (1L), Z \rightarrow \ell \ell (2L) (\ell = e, \mu)$$

600

200

IMPROVEMENTS IN $H \rightarrow CC$ Reconstruction

The ParticleNet $H \rightarrow cc$ tagger and mass regression bring substantial improvements to the analysis

CMS, <u>arXiv:2205.05550</u> (13 TeV) **Background efficiency** CMS DeepAK15 Simulation ---- ParticleNet anti- $k_{\tau} R = 1.5$ jets $p_{-} > 300 \text{ GeV}, \text{ h} \text{I} < 2.4$ ~5x better $H \rightarrow bb$ rejection 10^{-1} 10^{-2} etter rejection ····· H→cc vs. H→bb — H→cc̄ vs. V+jets 10⁻³ 0.2 8.0 0.4 0.6 Signal efficiency

ParticleNet tagger for $H \rightarrow cc$ tagging >2x improvement in final sensitivity

ParticleNet-based jet mass regression ~20-25% improvement in final sensitivity

$H \rightarrow CC RESULTS$

- VH(H \rightarrow cc) results with the full Run-2 data set (138 fb⁻¹)
 - $\mu_{VH(H \to c\bar{c})} < 14 \ (7.6)$ observed (expected)
 - substantially stronger than the ATLAS full Run-2 result: $\mu_{VH(H \to c\bar{c})} < 26 (31)$ obs. (exp.) [arXiv:2201.11428]
- Analysis validated by measuring VZ(Z \rightarrow cc): $\mu_{VZ(Z\rightarrow c\bar{c})} = 1.01^{+0.23}_{-0.21}$
 - **First observation of Z \rightarrow cc at a hadron collider,** with a significance of 5.7 σ

CMS, <u>arXiv:2205.05550</u>

expected sensitivity already comparable to the previous projection for HL-LHC w/ 3000 fb⁻¹: μ < 6.4 [ATL-PHYS-PUB-2021-039]

PARTICLENET: BEYOND JET TAGGING

₿€SШ

 $\Lambda_c^+ \rightarrow n e^+ \nu$ search Yunxuan Song, Yangu Li et al.

Particle identification

Eur.Phys.J.Plus 137 (2022) 1, 39 Eur.Phys.J.C 82 (2022) 7, 646

ud

C

The notion of point/particle clouds and GNNs inspired by ParticleNet have found wider applications in HEP

GOING BEYOND

LorentzNet

LORENTZNET

Incorporating Lorentz symmetry into graph neural network architecture

S. Gong, Q. Meng, J. Zhang, HQ, C. Li, S. Qian, W. Du, Z. M. Ma and T.Y. Liu, <u>IHEP 07 (2022) 030</u>

cf. A. Bogatskiy, B. Anderson, J. Offermann, M. Roussi, D. Miller and R. Kondor, <u>arXiv: 2006.04780</u>

LORENTZNET: PERFORMANCE

Significant performance improvement, with fewer trainable parameters

Performance on top-tagging benchmark [SciPost Phys. 7 (2019) 014]

Model	Accuracy	AUC	$\begin{array}{c} 1/\varepsilon_B\\ (\varepsilon_S = 0.5) \end{array}$	$\begin{array}{c} 1/\varepsilon_B\\ (\varepsilon_S=0.3)\end{array}$
ResNeXt	0.936	0.9837	302 ± 5	1147 ± 58
P-CNN	0.930	0.9803	201 ± 4	759 ± 24
PFN	0.932	0.9819	247 ± 3	888 ± 17
ParticleNet	0.940	0.9858	397 ± 7	1615 ± 93
EGNN	0.922	0.9760	148 ± 8	540 ± 49
LGN	0.929	0.9640	124 ± 20	435 ± 95
LorentzNet	0.942	0.9868	498 ± 18	2195 ± 173

S. Gong, Q. Meng, J. Zhang, HQ, C. Li, S. Qian, W. Du, Z. M. Ma and T.Y. Liu, <u>IHEP 07 (2022) 030</u>

Model complexity

	1			1	
Modol	Fauivarianco	Time on CPU	Time on GPU	#Parama	
MIOUEI		$({ m ms/batch})$	(ms/batch)	+1 arams	
ResNeXt	×	5.5	0.34	1.46M	
P-CNN	×	0.6	0.11	348k	
PFN	×	0.6	0.12	82k	
ParticleNet	×	11.0	0.19	366k	
EGNN	E(4)	30.0	0.30	222k	
LGN	$SO^{+}(1,3)$	51.4	1.66	$4.5\mathrm{k}$	
LorentzNet	$SO^{+}(1,3)$	32.9	0.34	224k	

LORENTZNET: BENEFITS FROM SYMMETRY

- Benefits from the symmetry preservation
 - model response invariant under Lorentz transformation
 - sample efficiency: incorporation of Lorentz symmetry allows to train with very few samples

S. Gong, Q. Meng, J. Zhang, HQ, C. Li, S. Qian, W. Du, Z. M. Ma and T.Y. Liu, <u>IHEP 07 (2022) 030</u>

Performance when trained on a fraction of the top-tagging dataset

Training	Model	Acquirequ		$1/arepsilon_B$	$1/arepsilon_B$
Fraction	Model	Accuracy	AUU	$(\varepsilon_S = 0.5)$	$(\varepsilon_S = 0.3)$
0.5%	ParticleNet	0.913	0.9687	77 ± 4	199 ± 14
(~6k jets)	LorentzNet	0.929	0.9793	176 ± 14	562 ± 72
10%	ParticleNet	0.919	0.9734	103 ± 5	287 ± 19
	LorentzNet	0.932	0.9812	209 ± 5	697 ± 58
F 07	ParticleNet	0.931	0.9807	195 ± 4	609 ± 35
J/0	LorentzNet	0.937	0.9839	293 ± 12	1108 ± 84

Particle Transformer

LARGE PHYSICS MODEL?

https://huggingface.co/blog/large-language-models

R. Das, G. Kasieczka and D. Shih, arXiv: 2212.00046

Large Language Models (like GPT) has transformed NLP. What if a Large Physics Model?

A FIRST STEP

JETCLASS: a new large and comprehensive jet simulation dataset

100M jets in 10 classes: ~two orders of magnitude larger than existing public datasets

We invite the community to explore and experiment with this dataset and extend the boundary of deep learning and HEP even further.

PARTICLE TRANSFORMER

- **Transformers**: the new state-of-the-art architecture in ML foundation of LLM like BERT/GPT
 - core concept: self-attention mechanism

Particle Transformer (ParT): Transformer model **tailored for particle physics**

PARTICLE TRANSFORMER: PERFORMANCE

	All cla	sses	$H \to b \overline{b}$	$H \to c \bar{c}$	$H \to gg$	$H \to 4q$	$H \to \ell \nu q q'$	$t \rightarrow bqq'$	$t \rightarrow b \ell \nu$	$W \to qq'$	$Z \to q$
	Accuracy	AUC	$\text{Rej}_{50\%}$	$\text{Rej}_{50\%}$	$\text{Rej}_{50\%}$	$\text{Rej}_{50\%}$	Rej _{99%}	$\text{Rej}_{50\%}$	$\text{Rej}_{99.5\%}$	$\text{Rej}_{50\%}$	Rej _{50%}
PFN	0.772	0.9714	2924	841	75	198	265	797	721	189	159
P-CNN	0.809	0.9789	4890	1276	88	474	947	2907	2304	241	204
ParticleNet	0.844	0.9849	7634	2475	104	954	3339	10526	11173	347	283
ParT	0.861	0.9877	10638	4149	123	1864	5479	32787	15873	543	402
ParT (plain)	0.849	0.9859	9569	2911	112	1185	3868	17699	12987	384	311

- Particle Transformer (ParT): significant performance improvement!
 - compared to the existing state-of-the-art, ParticleNet
 - 1.7% increase in accuracy
 - up to 3x increase in background rejection (Rej_{X%})

JETCLASS dataset (100M jets)

$$\blacktriangleright \operatorname{Rej}_{X\%} \equiv 1/\operatorname{FPR} \text{ at } \operatorname{TPR} = X\%,$$

PARTICLE TRANSFORMER: PERFORMANCE

	All cla	sses	$H \to b \overline{b}$	$H \to c \bar{c}$	$H \to gg$	$H \to 4q$	$H \to \ell \nu q q'$	$t \rightarrow bqq'$	$t \to b \ell \nu$	$W \to qq'$	$Z \to q \bar{q}$
	Accuracy	AUC	$\text{Rej}_{50\%}$	$\text{Rej}_{50\%}$	$\text{Rej}_{50\%}$	$\text{Rej}_{50\%}$	Rej _{99%}	$\text{Rej}_{50\%}$	$\text{Rej}_{99.5\%}$	$\text{Rej}_{50\%}$	$\text{Rej}_{50\%}$
PFN	0.772	0.9714	2924	841	75	198	265	797	721	189	159
P-CNN	0.809	0.9789	4890	1276	88	474	947	2907	2304	241	204
ParticleNet	0.844	0.9849	7634	2475	104	954	3339	10526	11173	347	283
ParT	0.861	0.9877	10638	4149	123	1864	5479	32787	15873	543	402
ParT (plain)	0.849	0.9859	9569	2911	112	1185	3868	17699	12987	384	311

- Particle Transformer (ParT): significant performance improvement!
 - compared to the existing state-of-the-art, ParticleN
 - 1.7% increase in accuracy
 - up to 3x increase in background rejection ($Rej_{X\%}$)
- ParT (plain): plain Transformer w/o interaction features
 - 1.2% drop in accuracy compared to full ParT
 - **Physics-driven modification of self-attention plays a key role!**

JETCLASS dataset (100M jets)

let	
-----	--

Model	compl	exity
	<i>P</i>	/

	Accuracy	# params	FLOP
PFN	0.772	86.1 k	4.62 N
P-CNN	0.809	354 k	15.5 N
ParticleNet	0.844	370 k	540 N
ParT	0.861	2.14 M	340 N
ParT (plain)	0.849	2.13 M	260 N

PARTICLE TRANSFORMER: PRE-TRAINING + FINE-TUNING

- The large Transformer-based model enables new training paradigm
 - (supervised) pre-training on a large dataset (e.g., JETCLASS) & fine-tuning to downstream tasks
 - significantly outperforms existing models

Тор	quark tagging	benchmark	$(\sim 2M jets)$	[SciPost Phys	s. 7 (2019)) 014]
					· · · · · ·	_

Top quark tagg	ging benchmar	k (~2M jet	s) [<u>SciPost Phys.</u> 7	(2019) 014]	Quark-gluor	n tagging benc	hmark (~2/	M jets) [<u>JHEP 01 (2</u>	<u>019) 121]</u>
	Accuracy	AUC	Rej _{50%}	Rej _{30%}		Accuracy	AUC	Rej _{50%}	Rej _{30%}
P-CNN	0.930	0.9803	201 ± 4	759 ± 24	P-CNN _{exp}	0.827	0.9002	34.7	91.0
PFN		0.9819	247 ± 3	888 ± 17	PFN _{exp}		0.9005	34.7 ± 0.4	
ParticleNet	0.940	0.9858	397 ± 7	1615 ± 93	ParticleNet _{exp}	0.840	0.9116	39.8 ± 0.2	98.6 ± 1.3
JEDI-net (w/ $\sum O$)	0.930	0.9807		774.6	rPCN _{exp}		0.9081	38.6 ± 0.5	
PCT	0.940	0.9855	392 ± 7	1533 ± 101	ParT _{exp}	0.840	0.9121	41.3 ± 0.3	101.2 ± 1.1
LGN	0.929	0.964		435 ± 95	ParticleNet-f.t.exp	0.839	0.9115	40.1 ± 0.2	100.3 ± 1.0
rPCN		0.9845	364 ± 9	1642 ± 93	ParT-f.t. _{exp}	0.843	0.9151	42.4 ± 0.2	107.9 ± 0.4
LorentzNet	0.942	0.9868	498 ± 18	2195 ± 173	PFN c 11		0.9052	$37 4 \pm 0.7$	
ParT	0.940	0.9858	413 ± 16	1602 ± 81	ARCNet an	0.840	0.0002	42.6 ± 0.1	118 / + 1 5
ParticleNet-f.t.	0.942	0.9866	487 ± 9	1771 ± 80		0.040	0.9120	42.0 ± 0.4	$110.4 \perp 1.0$ $110.0 \perp 9.0$
ParT-f.t.	0.944	0.9877	691 ± 15	2766 ± 130	PCI _{full}	0.841	0.9140	43.2 ± 0.7	118.0 ± 2.2
					LorentzNet _{full}	0.844	0.9156	42.4 ± 0.4	110.2 ± 1.3
					ParT _{full}	0.849	0.9203	47.9 ± 0.5	129.5 ± 0.9
					ParT-f.t. _{full}	0.852	0.9230	50.6 ± 0.2	138.7 ± 1.3

SUMMARY & OUTLOOK

SUMMARY & OUTLOOK

- The rise of deep learning has brought lots of progress in jet physics

 - leads to substantial increase in the physics reach at the LHC
- Towards the future
 - pushing the performance even further
 - new (physics-inspired) architectures: graph networks, Transformers, ...
 - increasing the robustness and controlling the systematics
 - robust architectures and training schemes
 - improvements in the simulation
 - beyond classification:
 - representation learning? anomaly detection? ...
 - <u>JetClass</u>: a large-scale open dataset to explore
- Your innovation and creativity can make a big difference!

new approaches, particularly graph neural networks, significantly improved the jet tagging performance

training strategy: end-to-end training => supervised pre-training => un-/semi-/self-supervised training (on real data)?

BACKUPS

JETS IN THE LUND PLANE

The Lund jet plane provides an efficient description of the radiation patterns within a jet

- each emission (splitting) is mapped to a point in the 2D (angle, transverse momentum) plane
 - further emissions (of the secondary particles) are represented in additional leaf planes
- different kinematic regimes are clearly separated in the Lund plane
- a natural input for ML algorithms on jets since it essentially encodes the full radiation patterns of a jet

LUNDNET

- LundNet: a graph neural network based on the Lund jet plane
 - technically, the input is a binary tree (from Cambridge/Aachen clustering)
 - equivalent to the **full** Lund plane
 - each node corresponds to an emission
 - a set of variables are be defined for the current splitting

$$\Delta^2 = (y_a - y_b)^2 + (\phi_a - \phi_b)^2, \quad k_t \equiv p_{tb} \Delta_{ab}, \quad m^2 \equiv (p_{tb})$$

 $z \equiv \frac{p_{tb}}{p_{ta} + p_{tb}}, \quad \kappa \equiv z\Delta, \qquad \psi \equiv t$

- Similar network architecture as ParticleNet
 - but the graph structure is fixed by the Lund tree
 - instead of the (dynamic) k-nearest neighbors
 - Two variants of LundNet studied
 - LundNet-5: using all five Lund variables,
 - LundNet-3: using only three Lund variables, $(\ln k_t, \ln \Delta, \ln z)$

F. Dreyer and H. Qu, <u>JHEP 03 (2021) 052</u>

 $(p_a + p_b)^2,$ $\tan^{-1}\frac{y_b - y_a}{\phi_b - \phi_a}$

LUNDNET: PERFORMANCE

- LundNet achieves very high performance at significant lower computational cost than ParticleNet
 - due to fewer number of neighbors in a binary tree & static graph structure
- Moreover, LundNet provides a systematic way to control the robustness of the tagger
 - the non-perturbative region can be effectively rejected by applying a k_t cut on the Lund plane

0.472

3.488

0.424

0.117

1.036

0.131

395k

369k

67k

LundNet

ParticleNet

Lund+LSTM

F. Dreyer and H. Qu, <u>JHEP 03 (2021) 052</u>

TAGGER CALIBRATION IN DATA

Crucial to calibrate these taggers in real data for them to be used in analyses

Top/W tagging efficiency

- measured using the single-µ sample enriched in semi-leptonic ttbar events
- fit jet mass templates in the "pass" and "fail" categories simultaneously to extract efficiency in data
 - simulation-to-data scale factors SF := eff(data) / eff(MC) derived to correct the simulation
- jet mass scale and resolution scale factors can also be extracted
- Mistag rates of background jet typically derived directly from analysis-specific control regions

Calibration of the cc-tagger

Need to measure ParticleNet cc-tagging efficiency in data

- no pure sample of $H \rightarrow cc$ jets (or even $Z \rightarrow cc$) in data
- using $g \rightarrow cc$ in QCD multi-jet events as a proxy
- Difficulty: select a phase-space in $g \rightarrow cc$ that resembles $H \rightarrow cc$
 - solution: a **dedicated BDT** developed to distinguish **hard 2-prong splittings** (*i.e.*, high quark contribution to the jet momentum) from **soft cc radiations** (i.e., high gluon contribution to the jet momentum)
 - also allows to adjust the similarity between proxy and signal jets
 - by varying the sfBDT cut treated as a systematic uncertainty

Perform a fit to the secondary vertex mass shapes in the "passing" and "failing" regions simultaneously to extract the scale factors

- three templates: cc (+ single c), bb (+ single b), light flavor jets
- Derived cc-tagging scale factors typically 0.9–1.3
 - corresponding uncertainties are 20–30%

