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Jet: a collimated spray of particles

WHAT IS A JET?
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WHY JETS?

Powerful handle to search for new phenomena
Jet: a collimated spray of particles
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A KEY QUESTION

4

The answer — Jet tagging!

H

W

Z

t

?

?

?

?

……

?

What type of particle initiates the jet?
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JET TAGGING
Jet tagging: identifying the origin of a jet, i.e., what kind of particle initiates the jet 

essentially a classification task from the machine learning perspective

5

Anatomy of a b-jet 16
41

Typical Experimental Signature

b-quark fragments into a b-hadron which carries most of the jet energy

Most b-hadrons (⇡ 90%) decay into c-hadrons

b-hadron decay vertex often displaced from the primary pp vertex by a few
mm

Subsequent c-hadron decay vertex often displaced by a further few mm

Tracks from both of these vertices often have large impact parameters

Anatomy of a c-jet 15
41

Typical Experimental Signature

c-quark fragments into a c-hadron which carries around half of the jet energy

c-hadron decay vertex often displaced from the primary pp vertex by a few
mm

Tracks from this vertex can often have large impact parameters

Anatomy of a light flavour (u, d , s) jet 14
41

Typical Experimental Signature

Light-quarks hadronise into many light hadrons which share the jet energy

Tracks from this vertex often have impact parameters consistent with zero

Long-lived light hadrons (e.g. K
0
S , ⇤

0) can be produced, though they are
more likely to decay very far (many cm) from the primary pp vertex

Light flavor (u,d,s,g) jet

c-jetb-jet

Image credit

Image credit

Image credit

⇡0
⇡0

⇡�
⇡0⇡�

⇡+

⇡+

Jet flavor tagging Boosted jet tagging Hadronic τ tagging

tb q

q

W t b

q

q
W

Focus of today

Lorentz boost

http://www.hep.ph.ic.ac.uk/seminars/slides/2018/181115_Chisholm_ATLAS_Hcc.pdf
https://link.springer.com/article/10.1140/epjc/s10052-020-7608-4
https://tikz.net/jet_tau/
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BOOSTED JET TAGGING
Hadronic decays of highly Lorentz-boosted heavy particles (Higgs/W/Z/top) lead to large-radius jets with 
distinctive characteristics: 

different radiation patterns (“substructure”) 

3-prong (top), 2-prong (W/Z/H) vs 1-prong (gluon/light quark jet) 

different flavor content: existence of one or more b-/c-quarks 

Boosted jet tagging: 

simultaneously exploiting both substructure and flavor to maximize the performance 

significant performance leap thanks to deep learning techniques
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JET REPRESENTATION FOR DEEP LEARNING
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JET REPRESENTATION

8

×

MLJet

First and foremost: 
How to represent the data?
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JET REPRESENTATION: IMAGE

9

ImageJet

Image-Based Jet Analysis 3

the detector measurements directly, rather than relying on jet features de-
veloped using physics domain knowledge, additional discrimination power
could be extracted. Deep learning approaches surpass such linear meth-
ods, but build on this notion of learning discriminating information from
detector observables rather than engineered features.

Fig. 1.: An example jet image of a Lorentz boosted top quark jet after
preprocessing has been applied [10].

While designed to take advantage of advances in computer vision, jet im-
ages have notable di↵erences with respect to typical natural images in CV.
Jet images are sparse, with most pixels in the image having zero content.
This is markedly di↵erent from natural images that tend to have all pixels
containing content. Moreover, jet images tend to have multiple localized
regions of high density in addition to di↵usely located pixels throughout
the image, as opposed to the smooth structures typically found in natural
images. An example top quark jet image illustrating these features can
be seen in Figure 1. These di↵erences can lead to notable challenges, for
instance the number of parameters used in jet image models (and conse-
quently the training time) tend to be large to account for the size of the
image, even though most pixels carry no information. Some techniques
exist for sparse-image computer vision approaches [11], but have not been
explored in depth within the jet image community.

This text will first discuss jets and typical jet physics in Section 2. The

Convert to 2D/3D image => Computer vision  

then use convolutional neural networks (CNNs) 

but:  

inhomogeneous geometry, high sparsity, …

e.g., review in Kagan, arXiv:2012.09719



Je
t T

ag
gi

ng
 in

 th
e 

Er
a 

of
 D

ee
p 

Le
ar

ni
ng

 - 
Se

pt
em

be
r 2

5,
 2

02
3 

- H
ui

lin
 Q

u 
(C

ER
N

)

JET REPRESENTATION: SEQUENCE
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SequenceJet

S1 S2 Sn. . .

I1 I2 In. . .
Input

Sequence

LSTM

States

MLP

Output

e.g., Guest, Collado, Baldi, Hsu, Urban, Whiteson
arXiv: 1607.08633

Convert to a sequence => Natural language processing (NLP) 

recurrent neural network (RNN), e.g., GRU/LSTM; 1D CNNs; etc.
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DEEPAK8
Advanced deep learning-based algorithm for boosted jet tagging, using AK8 (anti-kT R=0.8) jets 

multi-class classifier for top quark and W, Z, Higgs boson tagging 

directly uses jet constituents (particle-flow candidates / secondary vertices) 

1D convolutional neural network (CNN), based on the ResNet [arXiv: 1512.03385] architecture

11

Particles
• Up to 100 PF candidates(*)

• Sorted in descending pT order

• Uses basic kinematic variables, 
Puppi weights, and track 
properties (quality,  covariance, 
displacement, etc.)

Secondary vertices
• Up to 7 SVs(*) (inside jet cone)

• Sorted in descending SIP2D order

• Uses SV kinematics and properties 
(quality, displacement, etc.)

(*) Number chosen to include all candidates for ≥ 90% of the events

���
�	����	� �����	

Inputs

Architecture

Category Label

Higgs
H (bb)
H (cc)

H (VV*→qqqq)

Top

top (bcq)
top (bqq)
top (bc)
top (bq)

W
W (cq)
W (qq)

Z
Z (bb)
Z (cc)
Z (qq)

QCD

QCD (bb)
QCD (cc)
QCD (b)
QCD (c)

QCD (others)

Output

………

 particles, ordered by pT

fe
at

ur
es

Particles

1D CNN
(10 layers)

………

 SVs, ordered by SIP2D

fe
at

ur
es

Secondary Vertices

Fully 
connected

(1 layer)

Output

1D CNN
(14 layers)

filter

filter
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DEEPAK8 PERFORMANCE
Significant performance improvement compared to traditional approaches
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CMS, JINST 15 (2020) P06005

http://dx.doi.org/10.1088/1748-0221/15/06/P06005
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JET REPRESENTATION: SEQUENCE

13

SequenceJet

Limitations 

while words are naturally ordered in natural languages, particles are intrinsically unordered in a collision event 

an ordering has to be imposed (pT, distance, …), which can limit the learning performance

1

2

3

1 2 3

3

1

2

31 2

=

Permutation 
invariance

How are you

1 2 3

≠

Howare you

1 2 3
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POINT CLOUD

14

Point cloud 

an unordered set of points in space 

typically produced by a LiDAR / 3D scanner 

spatial distribution of points 

geometric structure of the objects



Je
t T

ag
gi

ng
 in

 th
e 

Er
a 

of
 D

ee
p 

Le
ar

ni
ng

 - 
Se

pt
em

be
r 2

5,
 2

02
3 

- H
ui

lin
 Q

u 
(C

ER
N

)

JET REPRESENTATION: PARTICLE CLOUD

15

Permutation 
invariance

y
x

z

η

φ
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PARTICLENET
ParticleNet: jet tagging via particle clouds 

treating a jet as an unordered set of particles, distributed in the η — φ space 

graph neural network architecture, adapted from Dynamic Graph CNN [arXiv:1801.07829] 

treating a point cloud as a graph: each point is a vertex 

for each point, a local patch is defined by finding its k-nearest neighbors 

designing a permutation-invariant “convolution” function 

define “edge feature” for each center-neighbor pair: eij = hΘ(xi, xj) 

aggregate the edge features in a symmetric way: xi’ =  eijmeanj

16

coordinates features

EdgeConv Block
k = 16, C = (64, 64, 64)

EdgeConv Block
k = 16, C = (128, 128, 128)

EdgeConv Block
k = 16, C = (256, 256, 256)

Global Average Pooling

Fully Connected
256, ReLU, Dropout = 0.1

Fully Connected
2

Softmax

Linear

BatchNorm

ReLU

Linear

BatchNorm

ReLU

coordinates features

k-NN

k-NN indices

ReLU

edge features

Linear

BatchNorm

ReLU

Aggregation

ParticleNet architecture

H. Qu and L. Gouskos
Phys.Rev.D 101 (2020) 5, 056019

cf. P. T. Komiske, E. M. Metodiev and J. Thaler, JHEP 01 (2019) 121;  
V. Mikuni and F. Canelli, Eur. Phys. J. Plus 135, 463 (2020); Mach.Learn.Sci.Tech. 2 (2021) 3, 035027.

https://doi.org/10.1103/PhysRevD.101.056019
https://doi.org/10.1007/JHEP01(2019)121
https://doi.org/10.1140/epjp/s13360-020-00497-3
https://doi.org/10.1088/2632-2153/ac07f6
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PARTICLENET: PERFORMANCE

17

Top performance among a variety of deep learning taggers on the community-wide top tagging benchmark
SciPost Physics Submission

AUC Acc 1/✏B (✏S = 0.3) #Param
single mean median

CNN [16] 0.981 0.930 914±14 995±15 975±18 610k
ResNeXt [30] 0.984 0.936 1122±47 1270±28 1286±31 1.46M

TopoDNN [18] 0.972 0.916 295±5 382± 5 378 ± 8 59k
Multi-body N -subjettiness 6 [24] 0.979 0.922 792±18 798±12 808±13 57k
Multi-body N -subjettiness 8 [24] 0.981 0.929 867±15 918±20 926±18 58k
TreeNiN [43] 0.982 0.933 1025±11 1202±23 1188±24 34k
P-CNN 0.980 0.930 732±24 845±13 834±14 348k
ParticleNet [47] 0.985 0.938 1298±46 1412±45 1393±41 498k

LBN [19] 0.981 0.931 836±17 859±67 966±20 705k
LoLa [22] 0.980 0.929 722±17 768±11 765±11 127k
Energy Flow Polynomials [21] 0.980 0.932 384 1k
Energy Flow Network [23] 0.979 0.927 633±31 729±13 726±11 82k
Particle Flow Network [23] 0.982 0.932 891±18 1063±21 1052±29 82k

GoaT 0.985 0.939 1368±140 1549±208 35k

Table 1: Single-number performance metrics for all algorithms evaluated on the test sample.
We quote the area under the ROC curve (AUC), the accuracy, and the background rejection
at a signal e�ciency of 30%. For the background rejection we also show the mean and median
from an ensemble tagger setup. The number of trainable parameters of the model is given as
well. Performance metrics for the GoaT meta-tagger are based on a subset of events.

competitive with the technically much more advanced ResNeXt50 and ParticleNet networks.
This suggests that even for a straightforward task like top tagging in fat jets we can develop
competitive and e�cient physics-specific tools. While their performance does not quite match
the state of the art standard networks, it is close enough to test both approaches on key
requirements in particle physics, like treatment of uncertainties, stability with respect to
detector e↵ects, etc.

The obvious question in any deep-learning analysis is if the tagger captures all relevant
information. At this point we have checked that including full or partial information on the
event-level kinematics of the fat jets in the event sample has no visible impact on our quoted
performance metrics. We can then test how correlated the classifier output of the di↵erent
taggers are. We show the pair-wise correlations for a subset of classifier outputs in Fig. 6, with
the correlation matrix given in Tab. 2. As expected from strong classifier performances, most
jets are clustered in the bottom left and top right corners, corresponding to identification as
background and signal, respectively. The largest spread is observed for correlations with the
EFP. Even the two strongest individual classifier outputs with relatively little physics input
— ResNeXt50 and ParticleNet — are not perfectly correlated.

Given that we find the outputs of the di↵erent algorithms not to be fully correlated, we
can investigate whether their combination into a meta-tagger might improve performance.
Note that this GoaT (Greatest of all Taggers) meta-tagger should not be viewed as a poten-
tial analysis tool, but rather as a benchmark of how much unused information is available
in correlations that could be captured by a future approach. It is implemented as a fully
connected network with 5 layers containing 100-100-100-20-2 nodes. All activation functions
are ReLu, apart from the final layer where we use SoftMax. Training is performed with the

15

ParticleNet-Lite 0.984 0.937 1262±49 26k

ParticleNet 0.986 0.940 1615±93 366k

Ensemble of 
all taggers

Architecture  
used by DeepAK8 

(Preliminary ver.)

G. Kasieczka et al.  
SciPost Phys. 7 (2019) 014

https://scipost.org/10.21468/SciPostPhys.7.1.014


BOOSTED JET TAGGING IN ACTION
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CORRELATION WITH THE JET MASS

19

Background sample 
Signal sample (fixed mass)

Jet mass

A
.U

.

Background jet mass

Plain training:  
no mass decorrelation

One feature of these taggers is the correlation with the jet mass 

jet mass shape of the background becomes similar to that of the signal after 
selection with the tagger: “mass sculpting” 

not necessarily a problem, but a mass-independent tagger is often more 
desirable: 

allows to use the mass variable to further separate signal and background 

enables tagging signal jets with an unknown mass 

…

CMS DP-2020/002

https://cds.cern.ch/record/2707946/
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Background sample 
Signal sample (fixed mass)

Jet mass

A
.U

.

Background jet mass

Plain training:  
no mass decorrelation

Background jet mass

Mass-decorrelated ParticleNet: 
training with variable-mass signal

Background sample 
Signal sample (variable mass)

Jet mass

A
.U

.

Mass-decorrelated DeepAK8: 
“adversarial training”

Background jet mass

Feature extractor Classifier

1D CNN Fully Connected
Classification

output

back propagation

Fully Connected

Mass predictor

Mass  
prediction

Joint loss  
L = LC − λLMP

back propagation

Loss  
LMP

Nominal DeepAK8

CMS DP-2020/002

https://cds.cern.ch/record/2707946/
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PERFORMANCE COMPARISON
ParticleNet-MD 

using a special signal sample for training 

hadronic decays of a spin-0 particle X 

X → bb, X → cc, X → qq 

not a fixed mass, but a flat mass spectrum 

m(X) ∈ [15, 250] GeV 

allows to easily reweight both signal and background 
to a ~flat 2D distribution in (pT, mass) for the training 

ParticleNet-MD shows the best performance 

~3-4x better background rejection compared to 
DeepAK8-MD (based on “adversarial training”) 

only slight performance loss compared to the 
nominal version w/o mass decorrelation

21
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MASS REGRESSION
Jet mass: one of the most powerful observables for boosted jet tagging 

characteristic mass peak for top/W/Z/H jets v.s. continuum for QCD jets 

Mass regression:  

exploit deep learning to reconstruct jet mass with the highest possible resolution 

training setup similar to the ParticleNet tagger 

but: predict the jet mass directly from the jet consitituents 

Regression target: 

signal (X → bb/cc/qq): generated particle mass of X [flat spectrum in 15 – 250 GeV] 

background (QCD) jets: soft drop mass of the generated particle-level jet 

Loss function 

LogCosh: 
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MASS REGRESSION: PERFORMANCE
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Jet mass response:  
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~20-25% improvement in the final sensitivity for H→bb / H→cc analyses

~50% improvement 
in resolution
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 bb,cc→H 

SEARCH FOR H→CC
Search for the Higgs boson decay to a pair of charm quarks (H→cc) 

next milestone in Higgs physics — couplings to second generation quarks 

extremely challenging at the LHC: 

small branching fraction (~3%) vs enormous backgrounds; difficulty in charm tagging 

H→cc search at CMS 

targets WH/ZH production, with 3 channels: Z→νν (0L), W→ℓν (1L), Z→ℓℓ (2L) (ℓ = e, µ) 

two complementary approaches to fully explore the H→cc decay topologies
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Resolved-jet topology  
reconstructs H→cc decay with two resolved jets (R=0.4) 
probes the bulk of the phase space

Merged-jet topology  
reconstructs H→cc decay with one large-R jets (R=1.5) 
higher purity, but lower acceptance
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IMPROVEMENTS IN H→CC RECONSTRUCTION
The ParticleNet H→cc tagger and mass regression bring substantial improvements to the analysis
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ParticleNet tagger for H→cc tagging 
>2x improvement in final sensitivity
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ParticleNet-based jet mass regression
~20-25% improvement in final sensitivity

~50% improvement 
in resolution

CMS DP-2021/017CMS, arXiv:2205.05550
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H→CC RESULTS
VH(H→cc) results with the full Run-2 data set (138 fb-1) 

 observed (expected) 

substantially stronger than the ATLAS full Run-2 result:  obs. (exp.) [arXiv:2201.11428] 

expected sensitivity already comparable to the previous projection for HL-LHC w/ 3000 fb-1: µ < 6.4 [ATL-PHYS-PUB-2021-039] 

Analysis validated by measuring VZ(Z→cc):  

First observation of Z→cc at a hadron collider, with a significance of 5.7σ

μVH(H→cc̄) < 14 (7.6)

μVH(H→cc̄) < 26 (31)

μVZ(Z→cc̄) = 1.01+0.23
−0.21
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Merged-jet topology

Upper limit on signal strength 

Merged-jet topology 
drives the sensitivity

CMS, arXiv:2205.05550

https://arxiv.org/abs/2205.05550
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PARTICLENET: BEYOND JET TAGGING
The notion of point/particle clouds and GNNs inspired by ParticleNet have found wider applications in HEP

27

Particle identification
Eur.Phys.J.Plus 137 (2022) 1, 39
Eur.Phys.J.C 82 (2022) 7, 646

4 Azzi, Gouskos, Selvaggi, Simon: Higgs and top physics challenges
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Fig. 1: Background contamination e�ciency as a function of jet-tagging e�ciency for bottom (left), charm (centre)
and strange (right) quark jets in HZ events at a centre-of-mass energy of 240 GeV in the IDEA detector.

clear challenges in the detector and algorithm design, another big challenge is the calibration of such algorithms with
the required precision in order to achieve relative uncertainty for most of the Higgs coupling measurements better than
1%. The FCC-ee running scenario includes the operation at the Z pole with the goal to collect O(1012) events. This
will provide excellent conditions for the calibration of the jet flavour tagging algorithm with unprecedented precision.

4 Exploitation for precision measurements and opportunities for further development

The physics potential of the techniques outlined above has already been studied for Higgs boson and top quark physics,
primarily in the linear collider context. In the following, we discuss one concrete example, and then highlight areas
where we see significant potential for further developments that address key remaining challenges.

A concrete example for the exploitation of precise jet energy reconstruction in the context of Higgs physics is
the reconstruction of HZ Higgsstrahlung events for hadronic decays of the Z boson. The recoil mass measurements
in the HZ process give model-independent access to the total HZ cross section, and with that to the coupling of the
Higgs boson to the Z, and thus also allow to constrain invisible Higgs boson decays. In principle, the extension from
considering only Z ! µ+µ�, e+e� to the inclusion of hadronic Z boson decays increases the number of HZ signal
events by one order of magnitude. The actual improvement achievable by adding these events depends on the level of
background in the signal region, which in turn is influenced by the accuracy of the recoil mass reconstruction, which
is determined by the jet reconstruction and the beam parameters. Concrete full-simulation studies have been carried
out in the context of CLIC and ILC, using the PandoraPFA algorithm [4,5]. Due to the constrained phase space at
250 GeV close to the threshold of ZH production, there is significant background in the signal region from four-quark
final states that end up being reconstructed near the kinematic limit, resulting in only modest improvements in the
measurement of the ZH cross section on the order of 20% compared to leptonic Z decays only, assuming the CLIC
luminosity spectrum [30]. Nevertheless, Figure 2 (left) demonstrates the capability for a clean reconstruction of the
hadronic Z decays and the associated recoil mass. The technique unfolds its full potential at energies of around 350
GeV, where signal and background are well separated, as shown in Figure 2 (right). Here, an improvement of the cross
section measurement by a factor of 2.3 is achieved in a CLIC study [30,11].

This example demonstrates that the potential for Higgs boson precision measurements profits significantly from
increasing performance of the jet energy resolution, resulting in corresponding requirements on the calorimeter and
tracker imposed by the PF reconstruction. At the same time, it shows that this performance alone does not guarantee
precision, with kinematic boundary conditions and the quality of the association of final state particles to jets also
highly relevant.

In the context of top quark physics, we have already discussed in section 2 with the example of [13] that the
exploitation of kinematic constraints in the event reconstruction can improve quantities such as the reconstructed
invariant mass, and with that can also serve as a means of signal selection. Measurements that use the top quarks as
tools to explore physics beyond the standard model impose further requirements on the overall event reconstruction.
It is crucial to assess the flavour and the correct association of the jets to the final state partons for measuring
asymmetries or searching for CP-violating couplings. Moreover, these will help also increase the sensitivity for the
search for FCNC in the top sector, where the current expectation obtained with a traditional analysis approach is
comparable to that for the HL-LHC [1].
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Fig. 1: Background contamination e�ciency as a function of jet-tagging e�ciency for bottom (left), charm (centre)
and strange (right) quark jets in HZ events at a centre-of-mass energy of 240 GeV in the IDEA detector.

clear challenges in the detector and algorithm design, another big challenge is the calibration of such algorithms with
the required precision in order to achieve relative uncertainty for most of the Higgs coupling measurements better than
1%. The FCC-ee running scenario includes the operation at the Z pole with the goal to collect O(1012) events. This
will provide excellent conditions for the calibration of the jet flavour tagging algorithm with unprecedented precision.

4 Exploitation for precision measurements and opportunities for further development

The physics potential of the techniques outlined above has already been studied for Higgs boson and top quark physics,
primarily in the linear collider context. In the following, we discuss one concrete example, and then highlight areas
where we see significant potential for further developments that address key remaining challenges.

A concrete example for the exploitation of precise jet energy reconstruction in the context of Higgs physics is
the reconstruction of HZ Higgsstrahlung events for hadronic decays of the Z boson. The recoil mass measurements
in the HZ process give model-independent access to the total HZ cross section, and with that to the coupling of the
Higgs boson to the Z, and thus also allow to constrain invisible Higgs boson decays. In principle, the extension from
considering only Z ! µ+µ�, e+e� to the inclusion of hadronic Z boson decays increases the number of HZ signal
events by one order of magnitude. The actual improvement achievable by adding these events depends on the level of
background in the signal region, which in turn is influenced by the accuracy of the recoil mass reconstruction, which
is determined by the jet reconstruction and the beam parameters. Concrete full-simulation studies have been carried
out in the context of CLIC and ILC, using the PandoraPFA algorithm [4,5]. Due to the constrained phase space at
250 GeV close to the threshold of ZH production, there is significant background in the signal region from four-quark
final states that end up being reconstructed near the kinematic limit, resulting in only modest improvements in the
measurement of the ZH cross section on the order of 20% compared to leptonic Z decays only, assuming the CLIC
luminosity spectrum [30]. Nevertheless, Figure 2 (left) demonstrates the capability for a clean reconstruction of the
hadronic Z decays and the associated recoil mass. The technique unfolds its full potential at energies of around 350
GeV, where signal and background are well separated, as shown in Figure 2 (right). Here, an improvement of the cross
section measurement by a factor of 2.3 is achieved in a CLIC study [30,11].

This example demonstrates that the potential for Higgs boson precision measurements profits significantly from
increasing performance of the jet energy resolution, resulting in corresponding requirements on the calorimeter and
tracker imposed by the PF reconstruction. At the same time, it shows that this performance alone does not guarantee
precision, with kinematic boundary conditions and the quality of the association of final state particles to jets also
highly relevant.

In the context of top quark physics, we have already discussed in section 2 with the example of [13] that the
exploitation of kinematic constraints in the event reconstruction can improve quantities such as the reconstructed
invariant mass, and with that can also serve as a means of signal selection. Measurements that use the top quarks as
tools to explore physics beyond the standard model impose further requirements on the overall event reconstruction.
It is crucial to assess the flavour and the correct association of the jets to the final state partons for measuring
asymmetries or searching for CP-violating couplings. Moreover, these will help also increase the sensitivity for the
search for FCNC in the top sector, where the current expectation obtained with a traditional analysis approach is
comparable to that for the HL-LHC [1].

Muon bundle reconstruction
JINST 16 (2021) 10, C10011,  
PoS ICRC2021 (2021) 1048

PoS(ICRC2021)1048

Muon bundle reconstruction with KM3NeT/ORCA using GNNs Stefan Reck

(a) all events (b) events with two or more muons

Figure 1: Absolute di�erence between reconstructed and true zenith angle plotted over the true zenith angle
for selected atmospheric muons in ORCA4. Shown are the median and the 68% band for the classical
reco (orange) and the deep learning reco (blue). Since it was trained on the expected distribution, the deep
learning reconstruction is biased for true cosine zeniths below 0.5, leading to an increase in the error. Most
atmospheric muons are not in that region. Deep learning provides a slight improvement in the median for all
events (left), which is mostly due to events with two or more muons (right).

Figure 2: Data-MC comparison of the reconstructed zenith angle for the classical approach (orange) and
deep learning (blue). A cut is used on the classical reconstruction quality in order to remove noise and
multi-muon events. Each curve is normalized to have an integral of 1, so only the shapes are compared in
this plot.

4

PoS(ICRC2021)1048

Muon bundle reconstruction with KM3NeT/ORCA using GNNs Stefan Reck

(a) all events (b) events with two or more muons

Figure 1: Absolute di�erence between reconstructed and true zenith angle plotted over the true zenith angle
for selected atmospheric muons in ORCA4. Shown are the median and the 68% band for the classical
reco (orange) and the deep learning reco (blue). Since it was trained on the expected distribution, the deep
learning reconstruction is biased for true cosine zeniths below 0.5, leading to an increase in the error. Most
atmospheric muons are not in that region. Deep learning provides a slight improvement in the median for all
events (left), which is mostly due to events with two or more muons (right).

Figure 2: Data-MC comparison of the reconstructed zenith angle for the classical approach (orange) and
deep learning (blue). A cut is used on the classical reconstruction quality in order to remove noise and
multi-muon events. Each curve is normalized to have an integral of 1, so only the shapes are compared in
this plot.
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Yunxuan Song, Yangu Li et al.

Λ+
c → ne+ν Cosmic ray pattern identification

Astropart.Phys. 126 (2021) 102527

with index a applied to pixel i of a single channel
image reads:

fa
i =

knX

j=1

✓aj xij (5)

with the result fa
i stored in a feature map, which in

turn is scanned by further filters after adding a bias
and applying an activation function. In addition
to Cartesian grids, spherical grids have also been
used in convolutional networks [63, 39] based on
the healpix pixelization [55].

Usually, filters for deeper layers receive informa-
tion from more distant pixels due to the increas-
ing receptive field of view, so that in a figurative
sense short-range correlations can be examined in
the first layers and long-range correlations in the
deeper layers. All K filters indexed a with their
respective parameters are trained on the basis of a
task formulated in the objective function.

3.2. Graph convolutional networks

A problem for applications of CNNs in astropar-
ticle physics is that the arrival directions of cosmic
rays are continuously distributed. If one wants to
position them artificially on a grid corresponding
to the experimental directional resolution, the pixel
occupancy is extremely sparse on the one hand and,
on the other hand, in a few pixels several particles
may be found which requires an algorithm to ag-
gregate the information. Both aspects are rather
unfavorable for the actual application as this leads
to loss of information or major computational costs.
Furthermore, most convolution algorithms are de-
signed for Euclidean manifolds and therefore cannot
handle the symmetry of spherical data.

The concept of graph convolutional networks

(GCN) [64, 65] solves the unnatural requirement
of particles placed on a regular grid. In GCNs,
each particle can be treated individually with its ar-
rival direction. All particles together form a point
cloud and, when using a specific neighborhood as-
signment, a graph. Here, the exact alignment and
position of the particles has to be considered in the
convolutional operation and in the structure of the
graph. In this astroparticle-physics application, the
graph is constructed in a spherical shape as the cos-
mic rays arrive almost uniformly from all directions
onto Earth. The particles in immediate proximity
to each other in the coordinate space are then re-
garded as the environment for a convolution. In
contrast to standard convolutional networks, the

explicit cosmic ray can still be identified in the
deeper network layer allowing for node classifica-
tion and high interpretability.

3.3. Dynamic graph convolutional neural networks

The special feature of dynamic graph convolu-
tional neural networks (DGCNNs) is that in each
layer the original graph is projected onto another
graph with arbitrary dimension in coordinate space
as illustrated in Fig. 3. Each particle can still be
followed through the network, however, its nearest
neighbors have changed. The high-dimensional co-
ordinates which for each transition define the near-
est neighbors and thus the graph are derived from
the properties (features) ~xc of the particles, e.g. ar-
rival direction, energy, shower depth, etc.
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Figure 3: Principle of a dynamic graph convolutional neu-
ral network with the example of 8 cosmic rays with arrival
coordinates (x, y) and properties ~xc (features). The convo-
lution operation is performed by a neural network on the
coordinates and features, using the 2 nearest neighbors of
each particle. The result of the operation is placed in a
new high-dimensional space, thereby changing the neighbor-
hood of the cosmic rays. In this way, the arrival patterns
of the cosmic rays, even if they are distributed over the en-
tire sphere, can be jointly characterized immediately in the
following network layer.

For the convolution using the kernel, the kn near-
est neighbors of a particle i are considered. Particle
i has M -dimensional properties ~xi,c which will be
related to the properties of the kn neighboring par-
ticles. The convolutional operation is implemented
following [42] using a neural network which depends
on all values of ~xi,c, and the di↵erences ~xi,c � ~xij ,c

between the M properties of the particle i and those
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Figure 7: Classified arrival directions: the color scale in-
dicates the median of the first 27 feature dimensions. A
cosmic ray is identified as signal with a median of the 27
feature values greater than 3 and is otherwise attributed to
isotropy. The signal pattern (denoted by filled circles) is
correctly identified.

e�ciency and purity as a function of the number of
signal particles of a source separately for the sce-
nario with pure helium and for the mixed composi-
tion.

For the helium scenario, 18 signal particles from
one source were required to achieve a significance
of 5 standard deviations (cf. Fig. 5). If the pat-
tern is detected, in median all 18 cosmic rays are
identified correctly with an e�ciency of 100 percent
as shown in Fig. 8a. Nevertheless there are cases
where fewer or even no cosmic rays with median
feature dimension values above 3 are detected re-
sulting in cases with a low e�ciency. This is shown
by the shaded region representing the 68% inter-
val in Fig. 8a. The median purity of 60% shown in
Fig. 8b is still rather low at NS = 18 and exhibits
a large spread. This means that, in addition to the
(in median) 18 correctly identified source particles,
(in median) 12 of the isotropically arriving particles
are incorrectly identified as signals. In the mixed
composition case, 31 identified source particles for
5 standard deviations have an e�ciency and purity
of around 60% � 70%.

4.3. Search for multiple cosmic-ray sources

In the third challenge, we again aim to identify
signal patterns in the arrival directions and ener-
gies of cosmic rays. Due to the general astrophys-
ical scenario used (see section 2.2), there may be
signal patterns from several di↵erent sources, each
contributing di↵erent numbers of cosmic rays.

(a)

(b)

Figure 8: Median e�ciency (a) and purity (b) of 500 simu-
lated sets as a function of the number of signal cosmic rays
NS coming from a single source. The remaining (1000�NS)
cosmic rays are distributed isotropically. Both the pure he-
lium (solid red) and the mixed composition (blue) are shown.
Transparent bands represent the 68% quantile.

For this analysis we use the dynamic graph con-
volutional network (DGCNN) with the extension
of the coordinate space from the second network
layer onward by considering the arrival directions of
the particles as well as the features resulting from
both the particles and their neighborhoods. Thus,
the network has the possibility to change neighbor-
hoods in deeper layers in such a way that neighbor-
hood properties can be exploited for the respective
challenge. Here, we find that the dynamic graph
network performs better than the graph network

10
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GOING BEYOND
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LorentzNet
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Figure 1. (left): The structure of the Lorentz Group Equivariant Block (LGEB). (right): The
network architecture of the LorentzNet.

3 Network Architecture

In this section, we illustrate the architecture of LorentzNet. The construction of the
LorentzNet is based on the following universal approximation theorem for the Lorentz
group equivariant continuous function.

Proposition 3.1. [55] A continuous function � : (RN⇥4) ! R4 is Lorentz-equivariant if
and only if

�(x1, x2, · · · , xN ) =
NX

i=1

gi(hxi, xjiNi,j=1)xi, (3.1)

where gi are continuous Lorentz-invariant scalar functions, and h·, ·i is the Minkowski inner
product.

Proposition 3.1 provides a way to construct Lorentz group equivariant mapping with
no need to calculate the high-order tensors. Instead, a Lorentz group equivariant continu-
ous mapping can be constructed by the attention on xi with encoding the Minkovski dot
products of xi with its neighbours. This motivates us to design the Minkowski dot product
attention in LorentzNet, which will be introduced in the next section.

3.1 LorentzNet

We introduce the blocks in LorentzNet. As described in Fig. 1, LorentzNet is mainly
constructed by the stack of Lorentz Group Equivariant block (LGEB) along with encoder
and decoder layers.

Input layer. The inputs into the network are 4-momenta of particles from a collision
event, and may include scalars associated with them (such as label, charge, etc.). That is,
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the input is a set of vectors vi = xi�si where xi = (Ei, pix, p
i
j , p

i
z) denotes the 4-momentum

vector and si = (si1, s
i
2, · · · , si↵) is the collection of scalars. In the experiments in this paper,

the scalars include the mass of the particle (i.e., (Ei)2 � (pix)
2 � (piy)

2 � (piz)
2) or particle

identification (PID) information directly if it is available.

Lorentz Group Equivariant Block. We use hl = (hl1, h
l
2, · · · , hln) to denote the node

embedding scalars, and xl = (xl1, x
l
2, · · · , xln) to denote the coordinate embedding vectors in

the l-th LGEB layer. When l = 0, x0 equals the input of the 4-momenta and h0i = si denotes
the input of the scalar variables. LGEB aims to learn deeper embeddings hl+1, xl+1 via
current hl, xl. Motivated by Equation (3.1), the message passing of LorentzNet is written
as follows. We use mij to denote the edge message between particle i and j, and it encodes
the scalar information of the particle i and j, i.e.,

ml
ij = �e

⇣
hli, h

l
j , (kxli � xljk2), (hxli, xlji)

⌘
, (3.2)

where �e(·) is a neural network and  (·) = sgn(·) log(| · | + 1) in Equation (3.2) is a
normalizing function to make the heavy tailed distributed quantities centralized for ease
of optimization. Except for the embedding of the scalar features hli and hlj , according
to Proposition 3.1, the input of the neural network contains the Minkowski dot product
hxi, xji. The kxli � xljk2 is also included because the interaction between particles relies on
this term and we include it as a prior feature for ease of learning.

According to Equation (3.1), we design Minkowski dot product attention as

xl+1
i = xli + c

X

j2[N ]

�x(m
l
ij) · xlj (3.3)

where �x(·) 2 R is a scalar function modeled by neural networks. To ensure the equiv-
ariance, we can not arbitrarily apply the normalization trick to control the scale of xl+1

i .
Therefore, we introduce the hyperparameter c to control the forward stability together with
the shortcut connection. This step captures the interactions of the i-th particle with other
particles via the ensemble of the 4-momenta of all particles. Unlike most of the symmetry-
preserving neural networks such as LGN and EGNN [56] (for E(n) equivariance)1 which
only include the radial distance kxi � xik2 as the only scalars extracted from the vector
representation, we include the dot product hxi, xji in mij to recover the information of
angles according to Equation (3.1) which can not be captured by the radial distance.

The scalar features for particle i is forward as

hl+1
i = hli + �h(h

l
i,

X

j2[N ]

wijm
l
ij), (3.4)

where �h(·) is also modeled by neural networks whose output dimension equals the dimen-
sion of hl+1

i . For efficient computation, we operate summation
P

j2[N ]wijml
ij to aggregate

ml
ij . We introduce an neural network �m(·) to learn the edge significance from node j to

node i, i.e., wij = �m(ml
ij) 2 [0, 1]. This can both ensure the permutation invariance but

also ease the implementation for jets with different number of particles. This operation is
also widely adopted in other types of graph neural networks [54, 56].

1
The relation with EGNN is discussed in the Appendix.
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LORENTZNET: PERFORMANCE
Significant performance improvement, with fewer trainable parameters
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We include this task to test the performance of LorentzNet under this different type of
input features.

4.2 Baselines and Tagging Performance

We compare the performance of LorentzNet with six baseline models: ResNeXt-50 [60],
P-CNN [61], PFN [37], ParticleNet [38], EGNN [56] and LGN [52]. The tagging accuracy
of these six models except EGNN has been reported in [38] and [52]. In this paper, we
also investigate their robustness under Lorentz transformation and the computational cost.
For self-contained, we briefly introduce them here. The ResNeXt-50 model is a 50 layer
convolutional neural network with skip connections for image classification. Representing
jets as images, we can apply ResNeXt-50 to jet tagging. The P-CNN is a 14-layer 1D CNN
using particle sequences as inputs. The P-CNN architecture was proposed in the CMS
particle-based DNN boosted jet tagger and showed significant improvement in performance
compared to a traditional tagger using boosted decision trees and jet-level observables.
The Particle Flow Network (PFN) and the ParticleNet also treats a jet as an unordered
set of particles. The PFN is based on the Deep Sets framework. The ParticleNet is based
on Dynamic Graph Convolutional Neural Network with carefully design on the EdgeConv
operation. We also include EGNN as a representative symmetry-preserving model as our
baseline which is E(4) equivariant. It is different from LorentzNet that EGNN uses metrics
in Euclidean space instead of Minkowski space. We compare LorentzNet with EGNN to
show the necessity of Lorentz group symmetry. For a fair comparison, we set the number
of parameters of EGNN in the same order with LorentzNet.

For ResNeXt, P-CNN, PFN, and ParticleNet, we follow the implementation in [38]. For
LGN, we follow the implementation in [52] on top tagging. For the quark-gluon dataset,
the implementation details are reported in Appendix A.

Model Accuracy AUC 1/"B
("S = 0.5)

1/"B
("S = 0.3)

ResNeXt 0.936 0.9837 302± 5 1147± 58

P-CNN 0.930 0.9803 201± 4 759± 24

PFN 0.932 0.9819 247± 3 888± 17

ParticleNet 0.940 0.9858 397± 7 1615± 93

EGNN 0.922 0.9760 148± 8 540± 49

LGN 0.929 0.9640 124± 20 435± 95

LorentzNet 0.942 0.9868 498± 18 2195± 173

Table 1. Performance comparison between LorentzNet and other representative algorithms on top
tagging dataset. The results for LorentzNet and EGNN are averaged on 6 runs. The results for
other baselines are referred to [37, 38, 52].

Tagging performance. The results for the top tagging dataset and quark-gluon dataset
are summarized in Table 1 and Table 2, respectively. We adopt the widely used measures to
evaluate the performance of the LorentzNet model including accuracy, the Area Under the
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Performance on top-tagging benchmark [SciPost Phys. 7 (2019) 014]

Model complexity

Model Equivariance Time on CPU
(ms/batch)

Time on GPU
(ms/batch)

#Params

ResNeXt 7 5.5 0.34 1.46M
P-CNN 7 0.6 0.11 348k
PFN 7 0.6 0.12 82k

ParticleNet 7 11.0 0.19 366k
EGNN E(4) 30.0 0.30 222k
LGN SO+(1,3) 51.4 1.66 4.5k

LorentzNet SO+(1,3) 32.9 0.34 224k

Table 5. Inference time of each model on both CPU and GPU along with their parameter numbers.
Models are executed on a cluster with an Intel Xeon CPU E5-2698 v4 and an Nvidia Tesla V100
32GB. Both of the inference times are collected with a batch size of 100.

We name this variant as LorentzNet without equivariance (abbreviated as LorentzNet
(w/o)). We compare the performance of LorentzNet (w/o) with LorentzNet on the top
tagging dataset. The hyperparameters of training LorentzNet (w/o) keep the same with
LorentzNet and we train LorentzNet (w/o) till it converges. As shown in Table 4, LorentzNet
(w/o) performs worse than LorentzNet, which shows the necessity of the Lorentz group
equivariance on the tagging performance.

4.6 Computational cost

We report the inference time of LorentzNet and other baseline models. The inference time
of each model on both CPU and GPU along with the number of their parameters are
reported in Table 5. The number of trainable parameters of LorentzNet is in the same
order with P-CNN, ParticleNet. Models are executed on a cluster with an Intel Xeon
CPU E5-2698 v4 and an Nvidia Tesla V100 32GB GPU. Both of the inference times are
collected with a batch size of 100. As shown in Table 5, the inference time on GPU of
LorentzNet is slightly larger than P-CNN, PFN and particleNet and is comparable with
ResNeXt. Especially, compared with LGN, the LorentzNet is almost 5 times faster on GPU,
although the number of trainable parameters of LGN is much smaller. For the inference
time on CPU, LorentzNet is also faster than LGN. Both results demonstrate the efficiency
of LorentzNet. Since there’s no need to compute the high-order tensors for LorentzNet, it is
more efficient. The main computational cost of LorentzNet comes from its message passing
on the fully connected graph. Its cost quadratically depends on the number of particles in
a jet. This cost can be reduced by clustering the nodes and we will explore it for future
study.

5 Conclusion

We have presented LorentzNet, a Lorentz group equivariant graph neural network for jet
tagging. Experiments on two representative jet tagging datasets show that LorentzNet
achieves substantial performance improvement over all existing methods. Moreover, the
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model response invariant under Lorentz transformation 

sample efficiency: incorporation of Lorentz symmetry allows to train with very few samples 
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Model Equivariance Accuracy AUC 1/"B
("S = 0.5)

1/"B
("S = 0.3)

LorentzNet (w/o) 7 0.934 0.9832 290± 30 1105± 59

LorentzNet 3 0.942 0.9868 498± 18 2195± 173

Table 4. Performance comparison between LorentzNet and corresponding non-equivalent version
on top tagging dataset. Both of the results are averaged on 6 runs.

training data on the rotated test data and the tagging accuracy on the rotated test data is
reported in Fig. 3. The horizontal axis of Fig. 3 shows the value of � and the vertical axis
shows the tagging accuracy on the top tagging dataset under Lorentz transformation with
corresponding �. Fig. 3 shows that the test accuracy of LorentzNet and LGN on the test
data after Lorentz transformation is robust in a large range of �, while the test accuracy of
other non-equivariant models will drop as � becomes larger. According to special relativity,
the fundamental quantities to clarify the particles will not be changed. The results show
that only the Lorentz group equivariant models LorentzNet and LGN can capture this
symmetry. Even compared with LGN, LorentzNet is more stable when � approaches 1 and
the instability of LGN is caused by the rounding errors in float arithmetic as described in
its original paper [52].

Figure 3. Equivariant test under Lorentz boosts on top tagging dataset.

4.5 Ablation study

In this section, we report the results of the ablation study to further demonstrate the effec-
tiveness of the components in LorentzNet. To show the effectiveness of keeping the Lorentz
group equivariance, we directly use xli, x

l
j as inputs of the �e to break the Lorentz group

equivariance because xli, x
l
j are not Lorentz group invariant variables, i.e., the Equation

(3.2) is replaced by

mij = �e(x
l
i, x

l
j , h

l
i, h

l
j), (4.1)

– 12 –

Model stability under Lorentz boost
fine-grained signal efficiency. The ROC curves of LorentzNet achieve the highest score at
all the selected signal efficiency compared to the baselines. Especially, LorentzNet shows
superiority compared to the LGN. Especially, it achieves 4 or 5 times improvement on the
background rejection. The results verify our discussions in Section 3.2.

Training
Fraction

Model Accuracy AUC 1/"B
("S = 0.5)

1/"B
("S = 0.3)

0.5%
ParticleNet 0.913 0.9687 77± 4 199± 14

LorentzNet 0.929 0.9793 176± 14 562± 72

1%
ParticleNet 0.919 0.9734 103± 5 287± 19

LorentzNet 0.932 0.9812 209± 5 697± 58

5%
ParticleNet 0.931 0.9807 195± 4 609± 35

LorentzNet 0.937 0.9839 293± 12 1108± 84

Table 3. Performance comparison between LorentzNet and ParticleNet on top tagging dataset by
a fraction of training data. The results are all averaged on 6 runs.

4.3 Sample Efficiency

The benefit of the preservation of Lorentz group symmetry in jet tagging has not been
studied in literature. In theory, the Lorentz group symmetry injects inductive bias into
the deep learning model which restricts the function class of the hypothesis space. The
inductive bias can help to boost the generalization and improve the sample efficiency. As
the improvement on the generalization performance (i.e., the tagging accuracy) has been
shown in the previous section, we show the robustness of LorentzNet trained on smaller
training data to verify the sample efficiency of LorentzNet in this part.

We choose the best performed architecture among the models with and without fully
Lorentz group symmetry (i.e., the LorentzNet and the ParticleNet) to compare. The induc-
tive bias in ParticleNet is a subgroup symmetry of Lorentz group, which only consider the
Lorentz boosts in the z-axis and the rotation on the x� y plane, while LorentzNet is sym-
metric to Lorentz group. We random select 5%, 1%, and 0.5% fraction of training data to
train the LorentzNet and ParticleNet on top tagging dataset, and we test the performance
of them on the same test data with size 400k. The training strategy keeps the same with
the experiments on the full training data. The results are reported in Table 3. The gap of
the tagging accuracy and AUC between LorentzNet and ParticleNet becomes larger as the
number of the training data becomes smaller. The results clearly show the benefit of the
preservation of Lorentz group symmetry in jet tagging.

4.4 Equivariance test

Another advantage of symmetry-preserving deep learning models is their robustness under
Lorentz transformation. To verify it, we rotate the test data by Lorentz transformation
with different scales of � along the x axis, i.e., the value of (E, px) in the 4-momentum
vector will be rotated. As � becomes larger, the difference between the distributions of
training and test data will become larger. We test the model trained on the original

– 11 –
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R. Das, G. Kasieczka and D. Shih, arXiv: 2212.00046

8

FIG. 5. R30 vs. number of parameters of the model, for many di↵erent approaches to top-tagging. LorentzNet[23], PaticleNet
[14], ParT [19], and PELICAN [24] are the some of the recent taggers with very good performances. “DisCo-FFS on EFPs”
corresponds to the simple DNN trained on the first nine EFPs selected by DisCo-FFS, while “DNN EFPs” is our DNN trained
on all the 7k EFPs. The remaining taggers are taken from [1]. We see that the nine EFPs selected using Disco-FFS have a
very competitive performance, especially given the number of parameters.

FIG. 6. Performance of training on 0.5%, 1% and 5% of
the training data. The EFPs selected using DisCo out-
perform ParticleNet, and match up to the performance of
LorentzNet [23] at 0.5% of the total training data.

lected feature that probes wide-angle radiation. In the
other path, we see the appearance of the first EFP which
probes 4-prong substructure with small-angle radiation
(� = 0.5), and this is followed up by an IRC-safe EFP
probing 3-prong substructure.

Interestingly in our single run of LorentzNet-guided
DisCo-FFS, the first 6 features are the same as Table II,

whereas after that the 7th-EFP is the same one selected in
Path 1 in III. This confirms that the similar performance
between DisCo-FFS with truth and with LorentzNet is
no coincidence, and is likely because LorentzNet (being
so high-performing) is quite close to the truth labels.

IV. CONCLUSIONS

In this work, we have introduced a new forward fea-
ture selection method, based on the distance correlation
measure of statistical dependence — dubbed DisCo-FFS.
Our method can operate equally well on either truth-
labels (for ab initio feature selection) or on the outputs
of a pre-trained classifier (for explaining a “black box”
AI).

We demonstrated the performance of our method using
the task of boosted top tagging, as boosted top jets have
a rich substructure and many subtle correlations that
have proven to be a fruitful laboratory for developing
increasingly powerful state-of-the-art taggers in the HEP
literature.

Following [30], we have trained our DisCo-FFS method
on a large set (7,000+) of Energy Flow Polynomials,
which aim to provide a complete description of the jet
substructure. We have seen that DisCo-FFS is very e↵ec-
tive at selecting EFPs from this large feature set; DisCo-
FFS can achieve nearly-state-of-the-art top tagging per-

HEP models (jet tagging)Natural language models

https://huggingface.co/blog/large-language-models

?

Large Language Models (like GPT) has transformed NLP.  
What if a Large Physics Model?

https://huggingface.co/blog/large-language-models
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JETCLASS: a new large and comprehensive jet simulation dataset 

100M jets in 10 classes: ~two orders of magnitude larger than existing public datasets

35

H ! 4qH ! bb̄ H ! cc̄ H ! gg H ! `⌫qq
0

q/gt ! b`⌫t ! bqq0 W ! qq0 Z ! qq̄

We invite the community to explore and experiment with this dataset and 
extend the boundary of deep learning and HEP even further. 

HQ, C. Li, S. Qian,  
ICML 2022
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PARTICLE TRANSFORMER
Transformers: the new state-of-the-art architecture in ML — foundation of LLM like BERT/GPT 

core concept: self-attention mechanism 

Particle Transformer (ParT): Transformer model tailored for particle physics
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Particle Transformer for Jet Tagging

second stage is a 2-layer MLP, with an LN before each
linear layer and GELU nonlinearity in between. Residual
connections are added after each stage. The overall block
structure is based on NormFormer (Shleifer et al., 2021),
however, we replace the standard MHA with P-MHA, an
augmented version that can also exploit the pairwise particle
interactions directly. The P-MHA is computed as

P-MHA(Q, K, V ) = SoftMax(QKT /
p

dk + U)V, (4)

where Q, K and V are linear projections of the particle
embedding xl. Essentially, we add the interaction matrix
U to the pre-softmax attention weights. This allows P-
MHA to incorporate particle interaction features designed
from physics principles and modify the dot-product attention
weights, thus increasing the expressiveness of the attention
mechanism.

Class attention block. As illustrated in Figure 3(c), the
class attention block has a similar structure as the particle
attention block. However, unlike in the particle attention
block where we compute the self attention between parti-
cles, here we compute the attention between a global class
token xclass and all the particles using the standard MHA.
Specifically, the inputs to the MHA are

Q = Wqxclass + bq,

K = Wkz + bk,

V = Wvz + bv,

(5)

where z = [xclass,xL] is the concatenation of the class token
and the particle embedding after the last particle attention
block, xL.

Implementation. We implement the ParT model in Py-
Torch (Paszke et al., 2019). Specifically, the P-MHA is im-
plemented using the PyTorch’s MultiheadAttention
by providing the interaction matrix U as the attn mask

input. The baseline ParT model has a total of L = 8 particle
attention blocks and 2 class attention blocks. It uses a parti-
cle embedding of a dimension d = 128, encoded from the
input particle features using a 3-layer MLP with (128, 512,
128) nodes each layer with GELU nonlinearity, and LN is
used in between for normalization. The interaction input
features are encoded using a 4-layer pointwise 1D convolu-
tion with (64, 64, 64, 16) channels with GELU nonlinearity
and batch normalization in between to yield a d0 = 16 di-
mensional interaction matrix. The P-MHA (MHA) in the
particle (class) attention blocks all have 8 heads, with a
query dimension d0 = 16 for each head, and an expansion
factor of 4 for the MLP. We use a dropout of 0.1 for all par-
ticle attention blocks, and no dropout for the class attention
block. The choice of hyperparameters provides a reasonable
baseline but is not extensively optimized.

5. Experiments
We conduct experiments on the new JETCLASS dataset and
show the results in Section 5.1. The pre-trained ParT models
are also applied to two existing datasets with fine-tuning,
and the performance is compared to previous state-of-the-
arts in Section 5.2.

5.1. Experiments on JETCLASS Dataset

Setup. For experiments on the JETCLASS dataset, we use
the full set of particle features, including kinematics, particle
identification, and trajectory displacement, as inputs. The
full list of 17 features for each particle is summarized in
Table 2. In addition, the 4 interaction features introduced
in Equation (3) are also used for the ParT model. The
training is performed on the full training set of 100 M jets.
We employ the Lookahead optimizer (Zhang et al., 2019)
with k = 6 and ↵ = 0.5 to minimize the cross-entropy
loss, and the inner optimizer is RAdam (Liu et al., 2020)
with �1 = 0.95, �2 = 0.999, and ✏ = 10�5. A batch
size of 512 and an initial learning rate (LR) of 0.001 are
used. No weight decay is applied. We train for a total of
1 M iterations, amounting to around 5 epochs over the full
training set. The LR remains constant for the first 70% of
the iterations, and then decays exponentially, at an interval
of every 20 k iterations, down to 1% of the initial value
at the end of the training. Performance of the model is
evaluated every 20 k iterations on the validation set and a
model checkpoint is saved. The checkpoint with the highest
accuracy on the validation set is used to evaluate the final
performance on the test set.

Baselines. We compare the performance of ParT with 3
baseline models: the PFN (Komiske et al., 2019b) architec-
ture based on Deep Sets (Zaheer et al., 2017), the P-CNN
architecture used by the DeepAK8 algorithm of the CMS ex-
periment (CMS Collaboration, 2020b), and the state-of-the-
art ParticleNet architecture (Qu & Gouskos, 2020) adapted
from DGCNN (Wang et al., 2019). All the models are
trained end-to-end on the JETCLASS dataset for the same
number of effective epochs for a direct comparison. For
ParticleNet, we directly use the existing PyTorch imple-
mentation. For PFN and P-CNN, we re-implement them
in PyTorch and verify that the published results are repro-
duced. The optimizer and LR schedule remain the same as
in the training of ParT. The (batch size, LR) combination is
re-optimized and chosen to be (512, 0.01) for ParticleNet
and (4096, 0.02) for PFN and P-CNN.

Results. Performance on the JETCLASS dataset is evaluated
using the metrics described in Section 2, and the results are
summarized in Table 1. The proposed ParT architecture
achieves the best performance on every metric, and outper-
forms the existing state-of-the-art, ParticleNet, by a large
margin. The overall accuracy is increased by 1.7% com-
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Figure 3. The architecture of (a) Particle Transformer (b) Particle Attention Block (c) Class Attention Block.

as the particles in a jet are permutation invariant. The spatial
information (i.e., the flying direction of each particle) is
directly included in the particle inputs. We feed the particle
embedding x0 into a stack of L particle attention blocks
to produce new embeddings, x1, ...,xL via multi-head self
attention. The interaction matrix Y is used to augment the
scaled dot-product attention by adding it as a bias to the
pre-softmax attention weights. The same Y is used for all
the particle attention blocks. After that, the last particle
embedding xL is fed into two class attention blocks, and a
global class token xclass is used to extract information for
jet classification via attention to all the particles, following
the CaiT approach (Touvron et al., 2021). The class token
is passed to a single-layer MLP, followed by softmax, to
produce the final classification scores.

Remark. ParT can also be viewed as a graph neural network
on a fully-connected graph, in which each node corresponds
to a particle, and the interactions are the edge features.

Particle interaction features. While the ParT architecture
is designed to be able to process any kinds of pairwise in-
teraction features, for this paper we only consider a specific
scenario in which the interaction features are derived from
the energy-momentum 4-vector, p = (E, px, py, pz), of
each particle. This is the most general case for jet tagging,
as the particle 4-vectors are available in every jet tagging

task. Specifically, for a pair of particles a, b with 4-vectors
pa, pb, we calculate the following 4 features:

� =
p

(ya � yb)2 + (�a � �b)2,

kT = min(pT,a, pT,b)�,

z = min(pT,a, pT,b)/(pT,a + pT,b),

m2 = (Ea + Eb)
2

� kpa + pbk
2,

(3)

where yi is the rapidity, �i is the azimuthal angle, pT,i =
(p2x,i + p2y,i)

1/2 is the transverse momentum, and pi =
(px,i, py,i, pz,i) is the momentum 3-vector and k · k is the
norm, for i = a, b. Since these variables typically have
a long-tail distribution, we take the logarithm and use
(ln �, ln kT, ln z, ln m2) as the interaction features for each
particle pair. The choice of this set of features is motivated
by Dreyer & Qu (2021).

Particle attention block. A key component of ParT is the
particle attention block. As illustrated in Figure 3(b), the
particle attention block consists of two stages. The first
stage includes a multi-head attention (MHA) module with
a LayerNorm (LN) layer both before and afterwards. The
second stage is a 2-layer MLP, with an LN before each
linear layer and GELU nonlinearity in between. Residual
connections are added after each stage. The overall block
structure is based on NormFormer (Shleifer et al., 2021),
however, we replace the standard MHA with P-MHA, an

and many other possible 
pairwise features…

Injection of (physics-inspired) pairwise features to  
“bias” the dot-product self-attention
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second stage is a 2-layer MLP, with an LN before each
linear layer and GELU nonlinearity in between. Residual
connections are added after each stage. The overall block
structure is based on NormFormer (Shleifer et al., 2021),
however, we replace the standard MHA with P-MHA, an
augmented version that can also exploit the pairwise particle
interactions directly. The P-MHA is computed as

P-MHA(Q, K, V ) = SoftMax(QKT /
p

dk + U)V, (4)

where Q, K and V are linear projections of the particle
embedding xl. Essentially, we add the interaction matrix
U to the pre-softmax attention weights. This allows P-
MHA to incorporate particle interaction features designed
from physics principles and modify the dot-product attention
weights, thus increasing the expressiveness of the attention
mechanism.

Class attention block. As illustrated in Figure 3(c), the
class attention block has a similar structure as the particle
attention block. However, unlike in the particle attention
block where we compute the self attention between parti-
cles, here we compute the attention between a global class
token xclass and all the particles using the standard MHA.
Specifically, the inputs to the MHA are

Q = Wqxclass + bq,

K = Wkz + bk,

V = Wvz + bv,

(5)

where z = [xclass,xL] is the concatenation of the class token
and the particle embedding after the last particle attention
block, xL.

Implementation. We implement the ParT model in Py-
Torch (Paszke et al., 2019). Specifically, the P-MHA is im-
plemented using the PyTorch’s MultiheadAttention
by providing the interaction matrix U as the attn mask

input. The baseline ParT model has a total of L = 8 particle
attention blocks and 2 class attention blocks. It uses a parti-
cle embedding of a dimension d = 128, encoded from the
input particle features using a 3-layer MLP with (128, 512,
128) nodes each layer with GELU nonlinearity, and LN is
used in between for normalization. The interaction input
features are encoded using a 4-layer pointwise 1D convolu-
tion with (64, 64, 64, 16) channels with GELU nonlinearity
and batch normalization in between to yield a d0 = 16 di-
mensional interaction matrix. The P-MHA (MHA) in the
particle (class) attention blocks all have 8 heads, with a
query dimension d0 = 16 for each head, and an expansion
factor of 4 for the MLP. We use a dropout of 0.1 for all par-
ticle attention blocks, and no dropout for the class attention
block. The choice of hyperparameters provides a reasonable
baseline but is not extensively optimized.

5. Experiments
We conduct experiments on the new JETCLASS dataset and
show the results in Section 5.1. The pre-trained ParT models
are also applied to two existing datasets with fine-tuning,
and the performance is compared to previous state-of-the-
arts in Section 5.2.

5.1. Experiments on JETCLASS Dataset

Setup. For experiments on the JETCLASS dataset, we use
the full set of particle features, including kinematics, particle
identification, and trajectory displacement, as inputs. The
full list of 17 features for each particle is summarized in
Table 2. In addition, the 4 interaction features introduced
in Equation (3) are also used for the ParT model. The
training is performed on the full training set of 100 M jets.
We employ the Lookahead optimizer (Zhang et al., 2019)
with k = 6 and ↵ = 0.5 to minimize the cross-entropy
loss, and the inner optimizer is RAdam (Liu et al., 2020)
with �1 = 0.95, �2 = 0.999, and ✏ = 10�5. A batch
size of 512 and an initial learning rate (LR) of 0.001 are
used. No weight decay is applied. We train for a total of
1 M iterations, amounting to around 5 epochs over the full
training set. The LR remains constant for the first 70% of
the iterations, and then decays exponentially, at an interval
of every 20 k iterations, down to 1% of the initial value
at the end of the training. Performance of the model is
evaluated every 20 k iterations on the validation set and a
model checkpoint is saved. The checkpoint with the highest
accuracy on the validation set is used to evaluate the final
performance on the test set.

Baselines. We compare the performance of ParT with 3
baseline models: the PFN (Komiske et al., 2019b) architec-
ture based on Deep Sets (Zaheer et al., 2017), the P-CNN
architecture used by the DeepAK8 algorithm of the CMS ex-
periment (CMS Collaboration, 2020b), and the state-of-the-
art ParticleNet architecture (Qu & Gouskos, 2020) adapted
from DGCNN (Wang et al., 2019). All the models are
trained end-to-end on the JETCLASS dataset for the same
number of effective epochs for a direct comparison. For
ParticleNet, we directly use the existing PyTorch imple-
mentation. For PFN and P-CNN, we re-implement them
in PyTorch and verify that the published results are repro-
duced. The optimizer and LR schedule remain the same as
in the training of ParT. The (batch size, LR) combination is
re-optimized and chosen to be (512, 0.01) for ParticleNet
and (4096, 0.02) for PFN and P-CNN.

Results. Performance on the JETCLASS dataset is evaluated
using the metrics described in Section 2, and the results are
summarized in Table 1. The proposed ParT architecture
achieves the best performance on every metric, and outper-
forms the existing state-of-the-art, ParticleNet, by a large
margin. The overall accuracy is increased by 1.7% com-
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Particle Transformer (ParT): significant performance improvement! 

compared to the existing state-of-the-art, ParticleNet 

1.7% increase in accuracy 

up to 3x increase in background rejection (RejX%)
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Table 1. Jet tagging performance on the JETCLASS dataset. ParT is compared to PFN (Komiske et al., 2019b), P-CNN (Sirunyan et al.,
2020b) and the state-of-the-art ParticleNet (Qu & Gouskos, 2020). For all the metrics, a higher value indicates better performance. The
ParT architecture using plain MHAs instead of P-MHAs, labelled as ParT (plain), is also shown for comparison.

All classes H ! bb̄ H ! cc̄ H ! gg H ! 4q H ! `⌫qq0 t ! bqq0 t ! b`⌫ W ! qq0 Z ! qq̄
Accuracy AUC Rej50% Rej50% Rej50% Rej50% Rej99% Rej50% Rej99.5% Rej50% Rej50%

PFN 0.772 0.9714 2924 841 75 198 265 797 721 189 159
P-CNN 0.809 0.9789 4890 1276 88 474 947 2907 2304 241 204
ParticleNet 0.844 0.9849 7634 2475 104 954 3339 10526 11173 347 283
ParT 0.861 0.9877 10638 4149 123 1864 5479 32787 15873 543 402
ParT (plain) 0.849 0.9859 9569 2911 112 1185 3868 17699 12987 384 311

The large improvement of ParT is likely to lead to a sig-
nificant jump in the discovery potential for related physics
searches at the LHC.

Another observation is that there is a large variation in tag-
ging performance between signals of different types. The
best separation against the background q/g jets is achieved
for t ! b`⌫ and H ! `⌫qq0 signals – with the powerful
ParT model, these two can be selected almost perfectly, i.e.,
at an efficiency of more than 99% with nearly no contami-
nation from background jets. This opens up new territory
for jet tagging at the LHC, as these types of jets have not
been exploited for tagging so far.

Ablation study. To quantify the effectiveness of the P-
MHA introduced in ParT, we carried out an ablation study
by replacing the P-MHA with a standard MHA, the result-
ing architecture is then a plain Transformer and therefore
denoted as ParT (plain). We train ParT (plain) with the same
procedure as the full ParT and the performance is shown in
Table 1. An accuracy drops of 1.2% is observed compared
to the full ParT, and the background rejection is reduced
by 20–30% for most signals. Note that, replacing P-MHA
with plain MHA implies that the particle interaction input is
discarded completely, but this does not imply a reduction of
information content, as the interaction features defined in
Equation (3) are derived purely from the energy-momentum
4-vectors, which are already used as particle features via
the 7 kinematic variables presented in Table 5. Therefore,
the improvement of ParT over a plain Transformer indeed
arise from an efficient exploitation of the particle kinematic
information using the P-MHA.

Model complexity. Table 2 compares the model complexity
of ParT with the baselines. While the number of trainable
parameters is increased by more than 5⇥ compared to Par-
ticleNet, the number of floating point operations (FLOPs)
is actually 40% lower. We also observe that the FLOPs
of ParT are 30% higher than ParT (plain), which mostly
comes from the encoding of the pairwise features, because
the computational cost there scales quadratically with the
number of particles in a jet.

Table 2. Number of trainable parameters and FLOPs.

Accuracy # params FLOPs

PFN 0.772 86.1 k 4.62 M
P-CNN 0.809 354 k 15.5 M
ParticleNet 0.844 370 k 540 M
ParT 0.861 2.14 M 340 M

ParT (plain) 0.849 2.13 M 260 M

5.2. Fine-Tuning for Other Datasets

Top quark tagging dataset. The top quark tagging bench-
mark (Butter et al., 2019) provides a dataset of 2 M
(1.2/0.4/0.4 M for train/validation/test) jets in two classes,
t ! bqq0 (signal) and q/g (background). Only kinematic
features, i.e., the energy-momentum 4-vectors, are provided.
Therefore, we pre-train a ParT model on the JETCLASS
dataset also using only the kinematic features, and then fine-
tune it on the top quark tagging dataset. The particle input
features are the 7 kinematic features listed in Table 5, the
same as used by ParticleNet. The JETCLASS pre-training
follows the same setup as described in Section 5.1. For the
fine-tuning, we replace the last MLP with a new randomly-
initialized MLP with 2 output nodes, and then fine-tune all
the weights on the top tagging dataset for 20 epochs. A
smaller LR of 0.0001 is used for the pre-trained weights,
while a larger LR of 0.005 is used to update the randomly-
initialized weights of the MLP. The LR remains constant
across the full training, with a weight decay of 0.01. We run
a total of 9 experiments, starting from the same pre-trained
model but different random initializations of the replaced
MLP, and report the performance of the model with median
accuracy and the spread, following the procedure used by
ParticleNet. For comparison, we also trained ParT from
scratch on this dataset for 20 epochs, using a start LR of
0.001, a schedule that decays the LR to 1% in the last 30%
of the epochs, and a weight decay of 0.01. Both results are
presented in Table 3. The pre-trained ParT achieves a sig-
nificant improvement over the existing baselines, increasing
Rej30% by 70% compared to the previous state-of-the-art,
ParticleNet. On the other hand, the ParT model trained from
scratch only reaches similar performance as ParticleNet.

Particle Transformer for Jet Tagging

up new possible territories for jet tagging at the LHC.

Simulation setup. Jets in this dataset are simulated with
standard Monte Carlo event generators used by LHC ex-
periments. The production and decay of the top quarks
and the W , Z and Higgs bosons are generated with MAD-
GRAPH5 aMC@NLO (Alwall et al., 2014). We use PYTHIA
(Sjöstrand et al., 2015) to evolve the produced particles, i.e.,
performing parton showering and hadronization, and pro-
duce the final outgoing particles1. To be close to realistic
jets reconstructed at the ATLAS or CMS experiment, detec-
tor effects are simulated with DELPHES (de Favereau et al.,
2014) using the CMS detector configuration provided in
DELPHES. In addition, the impact parameters of electrically
charged particles are smeared to match the resolution of the
CMS tracking detector (CMS Collaboration, 2014). Jets
are clustered from DELPHES E-Flow objects with the anti-
kT algorithm (Cacciari et al., 2008; 2012) using a distance
parameter R = 0.8. Only jets with transverse momentum
in 500–1000 GeV and pseudorapidity |⌘| < 2 are consid-
ered. For signal jets, only the “high-quality” ones that fully
contain the decay products of initial particles are included2.

Input features. The dataset provides all constituent par-
ticles of each jet as inputs for jet tagging. Note that the
number of particles varies from jet to jet, typically between
10 and 100, with an average of 30–50 depending on the jet
type. For each particle of a jet, three categories of features
are provided:

• Kinematics. This includes the energy and momen-
tum, described by the 4-vector (E, px, py, pz) in units
of GeV, which are the most fundamental quantities
measured by a particle detector. All other kinematic
variables can be computed from the 4-vectors.

• Particle identification. This includes the electric
charge, with values of ±1 (positively/negatively
charged particles) and 0 (neural particles), and the
particle identity determined by the detector systems.
For the latter, a 5-class one-hot encoding is used to
be consistent with current LHC experiments: charged
hadron (±211, ±321, ±2212), neutral hadron (0), elec-
tron (±11), muon (±13), and photon (22). The par-
ticle identification information is especially impor-
tant for tagging jets involving a charged lepton, e.g.,
H ! `⌫qq0 and t ! b`⌫, as leptons can be almost
unambiguously identified at the LHC.

• Trajectory displacement. This includes the measured
1We include multiple parton interactions but omit pileup inter-

actions in the simulation.
2We require all the quarks (q) and charged leptons (electrons

or muons, denoted `) from the decay of the top quark or the W ,
Z or Higgs boson satisfy �R(jet, q/`) < 0.8, where �R(a, b) ⌘p

(⌘a � ⌘b)2 + (�a � �b)2, in which ⌘ (�) is the pseudorapidity
(azimuthal angle) of the momentum of the jet or the particle.

values and errors of the transverse and longitudinal im-
pact parameters of the particle trajectories in units of
mm, in total 4 variables. These measurements are
only available for electrically charged particles, and
a value of 0 is used for neutral particles. The trajec-
tory displacement information is critical for tagging
jets involving a bottom (b) or charm (c) quark (CMS
Collaboration, 2020b), such as H ! bb̄, H ! cc̄,
t ! bqq0, etc., but is missing from most of the existing
datasets.

Training, validation and test sets. The training set con-
sists of 100 M jets in total, equally distributed in the 10
classes. An additional set of 500 k jets per class (in total
5 M) is intended for model validation. For the evaluation of
performance, a separate test set with 2 M jets in each class
(in total 20 M) is provided.

Evaluation metrics. To thoroughly evaluate the perfor-
mance of deep learning models on this dataset, we advocate
for a series of metrics. Since jet tagging on this dataset is
naturally framed as a multi-class classification task, two
common metrics, i.e., the accuracy and the area under the
ROC curve (AUC)3 are adopted to quantify the overall per-
formance. In addition, we propose the background rejection

(i.e., the inverse of the false positive rate) at a certain signal
efficiency (i.e., the true positive rate, TPR) of X%, i.e.,

RejX% ⌘ 1/FPR at TPR = X%, (1)

for each type of signal jets. By default, the q/g jets are
considered as the background, as is the case in most LHC
data analyses, and each of the other 9 types of jets can be
considered as the signal. The signal efficiency (TPR) for
each signal type is chosen to be representative of actual
usages at the LHC experiments and is typically 50%. It is
increased to 99% (99.5%) for H ! `⌫qq0 (t ! b`⌫), as
these types of jets have more distinct characteristics and can
be more easily separated from q/g jets. Since the definition
of the RejX metric involves only two classes, i.e., the signal
class under consideration (S) and the background class (B),
the TPR and FPR are evaluated using a two-class score,

scoreSvsB ⌘
score(S)

score(S) + score(B)
, (2)

where score(S) and score(B) are the softmax outputs for
class S and B, respectively, to achieve optimal performance
for S vs B separation. This is aligned with the conven-
tion adopted by the CMS experiment (CMS Collaboration,
2020b). Note that the background rejection metric, although
rarely used in vision or language tasks, is actually a stan-
dard metric for jet tagging because it is directly related to
the discovery potential at the LHC experiments. A factor

3The AUC can be calculated using roc auc score in scikit-
learn with average=’macro’ and multi class=’ovo’.

JETCLASS dataset (100M jets)
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Particle Transformer (ParT): significant performance improvement! 

compared to the existing state-of-the-art, ParticleNet 

1.7% increase in accuracy 

up to 3x increase in background rejection (RejX%) 

ParT (plain): plain Transformer w/o interaction features 

1.2% drop in accuracy compared to full ParT 

Physics-driven modification of self-attention plays a key role!
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Table 1. Jet tagging performance on the JETCLASS dataset. ParT is compared to PFN (Komiske et al., 2019b), P-CNN (Sirunyan et al.,
2020b) and the state-of-the-art ParticleNet (Qu & Gouskos, 2020). For all the metrics, a higher value indicates better performance. The
ParT architecture using plain MHAs instead of P-MHAs, labelled as ParT (plain), is also shown for comparison.

All classes H ! bb̄ H ! cc̄ H ! gg H ! 4q H ! `⌫qq0 t ! bqq0 t ! b`⌫ W ! qq0 Z ! qq̄
Accuracy AUC Rej50% Rej50% Rej50% Rej50% Rej99% Rej50% Rej99.5% Rej50% Rej50%

PFN 0.772 0.9714 2924 841 75 198 265 797 721 189 159
P-CNN 0.809 0.9789 4890 1276 88 474 947 2907 2304 241 204
ParticleNet 0.844 0.9849 7634 2475 104 954 3339 10526 11173 347 283
ParT 0.861 0.9877 10638 4149 123 1864 5479 32787 15873 543 402
ParT (plain) 0.849 0.9859 9569 2911 112 1185 3868 17699 12987 384 311

The large improvement of ParT is likely to lead to a sig-
nificant jump in the discovery potential for related physics
searches at the LHC.

Another observation is that there is a large variation in tag-
ging performance between signals of different types. The
best separation against the background q/g jets is achieved
for t ! b`⌫ and H ! `⌫qq0 signals – with the powerful
ParT model, these two can be selected almost perfectly, i.e.,
at an efficiency of more than 99% with nearly no contami-
nation from background jets. This opens up new territory
for jet tagging at the LHC, as these types of jets have not
been exploited for tagging so far.

Ablation study. To quantify the effectiveness of the P-
MHA introduced in ParT, we carried out an ablation study
by replacing the P-MHA with a standard MHA, the result-
ing architecture is then a plain Transformer and therefore
denoted as ParT (plain). We train ParT (plain) with the same
procedure as the full ParT and the performance is shown in
Table 1. An accuracy drops of 1.2% is observed compared
to the full ParT, and the background rejection is reduced
by 20–30% for most signals. Note that, replacing P-MHA
with plain MHA implies that the particle interaction input is
discarded completely, but this does not imply a reduction of
information content, as the interaction features defined in
Equation (3) are derived purely from the energy-momentum
4-vectors, which are already used as particle features via
the 7 kinematic variables presented in Table 5. Therefore,
the improvement of ParT over a plain Transformer indeed
arise from an efficient exploitation of the particle kinematic
information using the P-MHA.

Model complexity. Table 2 compares the model complexity
of ParT with the baselines. While the number of trainable
parameters is increased by more than 5⇥ compared to Par-
ticleNet, the number of floating point operations (FLOPs)
is actually 40% lower. We also observe that the FLOPs
of ParT are 30% higher than ParT (plain), which mostly
comes from the encoding of the pairwise features, because
the computational cost there scales quadratically with the
number of particles in a jet.

Table 2. Number of trainable parameters and FLOPs.

Accuracy # params FLOPs

PFN 0.772 86.1 k 4.62 M
P-CNN 0.809 354 k 15.5 M
ParticleNet 0.844 370 k 540 M
ParT 0.861 2.14 M 340 M

ParT (plain) 0.849 2.13 M 260 M

5.2. Fine-Tuning for Other Datasets

Top quark tagging dataset. The top quark tagging bench-
mark (Butter et al., 2019) provides a dataset of 2 M
(1.2/0.4/0.4 M for train/validation/test) jets in two classes,
t ! bqq0 (signal) and q/g (background). Only kinematic
features, i.e., the energy-momentum 4-vectors, are provided.
Therefore, we pre-train a ParT model on the JETCLASS
dataset also using only the kinematic features, and then fine-
tune it on the top quark tagging dataset. The particle input
features are the 7 kinematic features listed in Table 5, the
same as used by ParticleNet. The JETCLASS pre-training
follows the same setup as described in Section 5.1. For the
fine-tuning, we replace the last MLP with a new randomly-
initialized MLP with 2 output nodes, and then fine-tune all
the weights on the top tagging dataset for 20 epochs. A
smaller LR of 0.0001 is used for the pre-trained weights,
while a larger LR of 0.005 is used to update the randomly-
initialized weights of the MLP. The LR remains constant
across the full training, with a weight decay of 0.01. We run
a total of 9 experiments, starting from the same pre-trained
model but different random initializations of the replaced
MLP, and report the performance of the model with median
accuracy and the spread, following the procedure used by
ParticleNet. For comparison, we also trained ParT from
scratch on this dataset for 20 epochs, using a start LR of
0.001, a schedule that decays the LR to 1% in the last 30%
of the epochs, and a weight decay of 0.01. Both results are
presented in Table 3. The pre-trained ParT achieves a sig-
nificant improvement over the existing baselines, increasing
Rej30% by 70% compared to the previous state-of-the-art,
ParticleNet. On the other hand, the ParT model trained from
scratch only reaches similar performance as ParticleNet.

JETCLASS dataset (100M jets)
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Table 1. Jet tagging performance on the JETCLASS dataset. ParT is compared to PFN (Komiske et al., 2019b), P-CNN (Sirunyan et al.,
2020b) and the state-of-the-art ParticleNet (Qu & Gouskos, 2020). For all the metrics, a higher value indicates better performance. The
ParT architecture using plain MHAs instead of P-MHAs, labelled as ParT (plain), is also shown for comparison.

All classes H ! bb̄ H ! cc̄ H ! gg H ! 4q H ! `⌫qq0 t ! bqq0 t ! b`⌫ W ! qq0 Z ! qq̄
Accuracy AUC Rej50% Rej50% Rej50% Rej50% Rej99% Rej50% Rej99.5% Rej50% Rej50%

PFN 0.772 0.9714 2924 841 75 198 265 797 721 189 159
P-CNN 0.809 0.9789 4890 1276 88 474 947 2907 2304 241 204
ParticleNet 0.844 0.9849 7634 2475 104 954 3339 10526 11173 347 283
ParT 0.861 0.9877 10638 4149 123 1864 5479 32787 15873 543 402
ParT (plain) 0.849 0.9859 9569 2911 112 1185 3868 17699 12987 384 311

The large improvement of ParT is likely to lead to a sig-
nificant jump in the discovery potential for related physics
searches at the LHC.

Another observation is that there is a large variation in tag-
ging performance between signals of different types. The
best separation against the background q/g jets is achieved
for t ! b`⌫ and H ! `⌫qq0 signals – with the powerful
ParT model, these two can be selected almost perfectly, i.e.,
at an efficiency of more than 99% with nearly no contami-
nation from background jets. This opens up new territory
for jet tagging at the LHC, as these types of jets have not
been exploited for tagging so far.

Ablation study. To quantify the effectiveness of the P-
MHA introduced in ParT, we carried out an ablation study
by replacing the P-MHA with a standard MHA, the result-
ing architecture is then a plain Transformer and therefore
denoted as ParT (plain). We train ParT (plain) with the same
procedure as the full ParT and the performance is shown in
Table 1. An accuracy drops of 1.2% is observed compared
to the full ParT, and the background rejection is reduced
by 20–30% for most signals. Note that, replacing P-MHA
with plain MHA implies that the particle interaction input is
discarded completely, but this does not imply a reduction of
information content, as the interaction features defined in
Equation (3) are derived purely from the energy-momentum
4-vectors, which are already used as particle features via
the 7 kinematic variables presented in Table 5. Therefore,
the improvement of ParT over a plain Transformer indeed
arise from an efficient exploitation of the particle kinematic
information using the P-MHA.

Model complexity. Table 2 compares the model complexity
of ParT with the baselines. While the number of trainable
parameters is increased by more than 5⇥ compared to Par-
ticleNet, the number of floating point operations (FLOPs)
is actually 40% lower. We also observe that the FLOPs
of ParT are 30% higher than ParT (plain), which mostly
comes from the encoding of the pairwise features, because
the computational cost there scales quadratically with the
number of particles in a jet.

Table 2. Number of trainable parameters and FLOPs.

Accuracy # params FLOPs

PFN 0.772 86.1 k 4.62 M
P-CNN 0.809 354 k 15.5 M
ParticleNet 0.844 370 k 540 M
ParT 0.861 2.14 M 340 M

ParT (plain) 0.849 2.13 M 260 M

5.2. Fine-Tuning for Other Datasets

Top quark tagging dataset. The top quark tagging bench-
mark (Butter et al., 2019) provides a dataset of 2 M
(1.2/0.4/0.4 M for train/validation/test) jets in two classes,
t ! bqq0 (signal) and q/g (background). Only kinematic
features, i.e., the energy-momentum 4-vectors, are provided.
Therefore, we pre-train a ParT model on the JETCLASS
dataset also using only the kinematic features, and then fine-
tune it on the top quark tagging dataset. The particle input
features are the 7 kinematic features listed in Table 5, the
same as used by ParticleNet. The JETCLASS pre-training
follows the same setup as described in Section 5.1. For the
fine-tuning, we replace the last MLP with a new randomly-
initialized MLP with 2 output nodes, and then fine-tune all
the weights on the top tagging dataset for 20 epochs. A
smaller LR of 0.0001 is used for the pre-trained weights,
while a larger LR of 0.005 is used to update the randomly-
initialized weights of the MLP. The LR remains constant
across the full training, with a weight decay of 0.01. We run
a total of 9 experiments, starting from the same pre-trained
model but different random initializations of the replaced
MLP, and report the performance of the model with median
accuracy and the spread, following the procedure used by
ParticleNet. For comparison, we also trained ParT from
scratch on this dataset for 20 epochs, using a start LR of
0.001, a schedule that decays the LR to 1% in the last 30%
of the epochs, and a weight decay of 0.01. Both results are
presented in Table 3. The pre-trained ParT achieves a sig-
nificant improvement over the existing baselines, increasing
Rej30% by 70% compared to the previous state-of-the-art,
ParticleNet. On the other hand, the ParT model trained from
scratch only reaches similar performance as ParticleNet.

Model complexity

https://zenodo.org/record/6619768
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PARTICLE TRANSFORMER: PRE-TRAINING + FINE-TUNING
The large Transformer-based model enables new training paradigm 

(supervised) pre-training on a large dataset (e.g., JETCLASS) & fine-tuning to downstream tasks 

significantly outperforms existing models
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Table 5. Comparison between ParT and existing models on the
top quark tagging dataset. ParT refers to the model trained from
scratch on this dataset. ParticleNet-f.t. and ParT-f.t. denote the
corresponding models pre-trained on JETCLASS and fine-tuned
on this dataset. Results for other models are quoted from their
published results: P-CNN and ParticleNet (Qu & Gouskos, 2020),
PFN (Komiske et al., 2019b), JEDI-net (Moreno et al., 2020), PCT
(Mikuni & Canelli, 2021), LGN (Bogatskiy et al., 2020), rPCN
(Shimmin, 2021), and LorentzNet (Gong et al., 2022).

Accuracy AUC Rej50% Rej30%
P-CNN 0.930 0.9803 201 ± 4 759 ± 24
PFN — 0.9819 247 ± 3 888 ± 17
ParticleNet 0.940 0.9858 397 ± 7 1615 ± 93
JEDI-net (w/

P
O) 0.930 0.9807 — 774.6

PCT 0.940 0.9855 392 ± 7 1533 ± 101
LGN 0.929 0.964 — 435 ± 95
rPCN — 0.9845 364 ± 9 1642 ± 93
LorentzNet 0.942 0.9868 498 ± 18 2195 ± 173
ParT 0.940 0.9858 413 ± 16 1602 ± 81
ParticleNet-f.t. 0.942 0.9866 487 ± 9 1771 ± 80
ParT-f.t. 0.944 0.9877 691 ± 15 2766 ± 130

the JETCLASS dataset. In the “full” scenario, we consider
all particle types and further distinguish electrically charged
(and neural) hadrons into more types, such as pions, kaons,
and protons. We perform the pre-training on JETCLASS
using only kinematic and particle identification inputs un-
der the “exp” scenario. For the fine-tuning, we then carry
out experiments in both scenarios. The construction of the
input features is described in Table 2. The pre-training and
fine-tuning setup is the same as in the top quark tagging
benchmark, and the fine-tuning also lasts for 20 epochs.
Results are summarized in Table 6. The pre-trained ParT
achieves the best performance and improves existing base-
lines by a large margin in both scenarios.

6. Discussion and Conclusion
Large-scale datasets have always been a catalyst for new
breakthroughs in deep learning. In this work, we present
JETCLASS, a new large-scale open dataset to advance deep
learning research in particle physics. The dataset consists
of 100 M simulated jets, about two orders of magnitude
larger than existing public jet datasets, and covers a broad
spectrum of 10 classes of jets in total, including several
novel types that have not been studied with deep learning
so far. While we focus on investigating a classification
task, i.e., jet tagging, with this dataset, we highlight that
this dataset can serve as the basis for many important deep
learning researches in particle physics, e.g., unsupervised or
self-supervised training techniques for particle physics (e.g.,
Dillon et al. (2021)), generative models for high-fidelity fast
simulation of particle collisions (e.g., Kansal et al. (2021a)),
regression models to predict jet energy and momentum with
higher precision (e.g., CMS Collaboration (2020a)), and
more. We invite the community to explore and experiment

Table 6. Comparison between ParT and existing models on the
quark-gluon tagging dataset. ParT refers to the model trained from
scratch on this dataset. ParticleNet-f.t. and ParT-f.t. denote the
corresponding models pre-trained on JETCLASS and fine-tuned on
this dataset. Results for other models are quoted from their pub-
lished results: P-CNN and ParticleNet (Qu & Gouskos, 2020), PFN
(Komiske et al., 2019b), ABCNet (Mikuni & Canelli, 2020), PCT
(Mikuni & Canelli, 2021), rPCN (Shimmin, 2021), and LorentzNet
(Gong et al., 2022). The subscript “exp” and “full” distinguish
models using partial or full particle identification information.

Accuracy AUC Rej50% Rej30%
P-CNNexp 0.827 0.9002 34.7 91.0
PFNexp — 0.9005 34.7 ± 0.4 —
ParticleNetexp 0.840 0.9116 39.8 ± 0.2 98.6 ± 1.3
rPCNexp — 0.9081 38.6 ± 0.5 —
ParTexp 0.840 0.9121 41.3 ± 0.3 101.2 ± 1.1
ParticleNet-f.t.exp 0.839 0.9115 40.1 ± 0.2 100.3 ± 1.0
ParT-f.t.exp 0.843 0.9151 42.4 ± 0.2 107.9 ± 0.5

PFNfull — 0.9052 37.4 ± 0.7 —
ABCNetfull 0.840 0.9126 42.6 ± 0.4 118.4 ± 1.5
PCTfull 0.841 0.9140 43.2 ± 0.7 118.0 ± 2.2
LorentzNetfull 0.844 0.9156 42.4 ± 0.4 110.2 ± 1.3
ParTfull 0.849 0.9203 47.9 ± 0.5 129.5 ± 0.9
ParT-f.t.full 0.852 0.9230 50.6 ± 0.2 138.7 ± 1.3

with this dataset and extend the boundary of deep learning
and particle physics even further.

With this large dataset, we introduce Particle Transformer
(ParT), a new architecture that substantially improves jet
tagging performance over previous state-of-the-art. We pro-
pose it as a new jet tagging baseline for future research
to improve upon. The effectiveness of ParT arises mainly
from the augmented self-attention, in which we incorpo-
rate physics-inspired pairwise interactions together with the
machine-learned dot-product attention. This approach is
likely to be effective for other tasks on similar datasets, such
as point clouds or many-body systems, especially when
prior knowledge is available to describe the interaction or
the geometry. On the other hand, one limitation of using the
full pairwise interaction matrix is the increase in computa-
tional time and memory consumption. Novel approaches for
particle (point) embeddings and self-attentions that alleviate
the computational cost (e.g., Zhou et al. (2021); Kitaev et al.
(2020)) could be an interesting direction for future research.
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SUMMARY & OUTLOOK
The rise of deep learning has brought lots of progress in jet physics 

new approaches, particularly graph neural networks, significantly improved the jet tagging performance 

leads to substantial increase in the physics reach at the LHC 

Towards the future 

pushing the performance even further 

new (physics-inspired) architectures: graph networks, Transformers, … 

training strategy: end-to-end training => supervised pre-training => un-/semi-/self-supervised training (on real data)? 

increasing the robustness and controlling the systematics 

robust architectures and training schemes 

improvements in the simulation 

beyond classification: 

representation learning? anomaly detection? … 

JetClass: a large-scale open dataset to explore 

Your innovation and creativity can make a big difference!
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JETS IN THE LUND PLANE
The Lund jet plane provides an efficient description of the radiation patterns within a jet 

each emission (splitting) is mapped to a point in the 2D (angle, transverse momentum) plane 

further emissions (of the secondary particles) are represented in additional leaf planes 

different kinematic regimes are clearly separated in the Lund plane 

a natural input for ML algorithms on jets since it essentially encodes the full radiation patterns of a jet
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LUNDNET
LundNet: a graph neural network based on the Lund jet plane 

technically, the input is a binary tree (from Cambridge/Aachen clustering) 

equivalent to the full Lund plane 

each node corresponds to an emission 

a set of variables are be defined for the current splitting 

Similar network architecture as ParticleNet 

but the graph structure is fixed by the Lund tree  

instead of the (dynamic) k-nearest neighbors 

Two variants of LundNet studied 

LundNet-5: using all five Lund variables, 

LundNet-3: using only three Lund variables,
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Figure 1. The Lund plane representation of a jet (left) where each emission is positioned according
to its ∆ and kt coordinates, and the corresponding mapping to a binary Lund tree of tuples (right).
The thick blue line represents the primary sequence of tuples Lprimary.

senting the angle and transverse momentum of a given emission with respect to its emitter,
and which is often used in discussions of resummations of large logarithms in perturbation
theory or of Monte Carlo parton showers. Each emission then creates an additional trian-
gular leaf corresponding to the phase space for further emissions. It was shown in recent
work that the Lund plane provides a useful basis to achieve an efficient description of the
clustering sequence of a jet, containing a rich set of information about its substructure,
with notable potential for jet tagging [33]. The Lund jet plane allows for a visual repre-
sentation of the clustering history of a jet. This systematic encoding of a jet’s radiation
patterns can be measured experimentally [34], allowing for comparisons between theoretical
predictions and experimental data [35] and with potential for constraining general purpose
Monte Carlo event generators [36].

The Lund plane is obtained by first reclustering a jet’s constituents with the Cam-
bridge/Aachen (CA) algorithm [37, 38], which sequentially identifies and combines the
pair of particles a and b closest in rapidity y, a measure of relativistic velocity along the
beam axis, and azimuthal angle φ around the same axis, i.e. minimising ∆2 = (ya − yb)2 +
(φa − φb)2. We then iterate over this clustering sequence, starting from the full jet and
proceeding by:

1. Declustering the current (pseudo)jet into two transverse momentum ordered pseudo-
jets a and b such that pt,a > pt,b, and where we consider b to be the emission of the
(a+ b) emitter.
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Lund coordinates

EdgeConv Block
C = (32, 32)

EdgeConv Block
C = (64, 64)

EdgeConv Block
C = (128, 128)

Global Average Pooling

Fully Connected
256, ReLU, Dropout = 0.1

Fully Connected
2

Softmax

Lund tree

EdgeConv Block
C = (32, 32)

EdgeConv Block
C = (64, 64)

EdgeConv Block
C = (128, 128)

Concatenate

Linear (384) + BN + ReLU

ReLU

features

Lund tree feature pairs

Linear (C1) + BN + ReLU

Aggregation

Linear (C2) + BN + ReLU

(a)

(b) (c)

edge features

Figure 3. (a) Illustration of the EdgeConv operation on a node of the Lund tree. (b) Architecture
of the EdgeConv block used in the LundNet model. (c) Architecture of the LundNet model.

the distribution of the number of Lund declusterings per jet for several choices of kt cut
in 2TeV QCD jets simulated using Pythia 8.223 [40]. The mean of each distribution is
indicated as a dashed line. An additional benefit of a kt threshold is that even for small cut
values the number of nodes per jet is significantly reduced, and therefore correspondingly
so the computational cost of training a machine learning model on these inputs. The right-
hand side of figure 2 shows the average number of nodes per jet as a function of the kt cut,
which decreases quadratically as the cut is increased.

3 LundNet models

The Lund plane encodes a rich set of information of the substructure and radiation patterns
of a jet, therefore serving as a natural input to machine learning models for jet physics. The
use of Lund planes for jet tagging was first proposed in ref. [33] where log-likelihood and
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2.1 Construction of the primary Lund plane

Our starting point for constructing the primary Lund plane is to (re-)cluster a jet’s con-

stituents with the Cambridge-Aachen (C/A) algorithm [49, 50], which has significant ad-

vantages over other members of the generalised-kt [51] family (see section 2.4).2 The C/A

algorithm identifies the pair of particles i and j closest in rapidity (y = ln E+pz
E−pz

, with

E and pz the particle’s energy and longitudinal momentum with respect to the colliding

beams) and azimuth φ, i.e. with the minimal value of ∆2
ij = (yi − yj)2 + (φi − φj)2. It

then recombines them into a “pseudojet” with momentum p = pi + pj . This procedure

is repeated until all particles (and pseudojets) have been recombined, or are separated by

∆ij larger than some parameter R.

To create a primary Lund plane representation of a jet we then work backwards through

the C/A clustering. One starts with the full jet and then proceeds as follows:

1. Decluster the current object to produce two pseudojets, pa and pb, labelled such that

pta > ptb, where pti is the transverse momentum of i with respect to the colliding

beams. We will consider pb to be the emission and pa + pb to be the emitter. In the

limit where pb carries little momentum relative to pa, pa + pb and pa can be thought

of being the same particle, simply differing through the loss of a small amount of

momentum by the radiation of a gluon pb.

2. Determine a number of variables associated with the declustering, e.g.

∆ ≡ ∆ab, kt ≡ ptb∆ab, m2 ≡ (pa + pb)
2, (2.1a)

z ≡ ptb
pta+ptb

, κ ≡ z∆ , ψ ≡ tan−1 yb−ya
φb−φa

, (2.1b)

In the limit ptb # pta and ∆ # 1, kt is the transverse momentum of particle b (the

emission) relative to its emitter, ψ is an azimuthal angle around the (sub)jet axis,

and z is the momentum fraction of the branching. In our default definition of the

Lund plane, the coordinates associated with this declustering will be ln∆ and ln kt.

One may also, however, make other choices of coordinates, such as for example ln∆

and lnκ, or ln∆ and ln kt/pt,jet (with pt,jet the jet transverse momentum). We will

denote the variables as a tuple T (i) = {k(i)t ,∆(i), . . .} for the ith iteration of this step.

3. Repeat the procedure by going to step 1 for the harder branch, pa.

This procedure gives an ordered list of tuples of variables

Lprimary =
[
T (i), . . . , T (n)

]
(2.2)

containing the kinematic variables for each of the primary branchings off the main emitter.

The kt and ∆ elements of the tuples (specifically their logarithms) can be interpreted as

set of coordinates of points in the Lund plane, corresponding to the full set of primary

2Throughout this paper, we also use the C/A algorithm for the initial jet finding. The case where jets are

clustered with the anti-kt algorithm (and re-clustered with the C/A algorithm) is discussed in appendix A.
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Figure 1. The Lund plane representation of a jet (left) where each emission is positioned according
to its ∆ and kt coordinates, and the corresponding mapping to a binary Lund tree of tuples (right).
The thick blue line represents the primary sequence of tuples Lprimary.

senting the angle and transverse momentum of a given emission with respect to its emitter,
and which is often used in discussions of resummations of large logarithms in perturbation
theory or of Monte Carlo parton showers. Each emission then creates an additional trian-
gular leaf corresponding to the phase space for further emissions. It was shown in recent
work that the Lund plane provides a useful basis to achieve an efficient description of the
clustering sequence of a jet, containing a rich set of information about its substructure,
with notable potential for jet tagging [33]. The Lund jet plane allows for a visual repre-
sentation of the clustering history of a jet. This systematic encoding of a jet’s radiation
patterns can be measured experimentally [34], allowing for comparisons between theoretical
predictions and experimental data [35] and with potential for constraining general purpose
Monte Carlo event generators [36].

The Lund plane is obtained by first reclustering a jet’s constituents with the Cam-
bridge/Aachen (CA) algorithm [37, 38], which sequentially identifies and combines the
pair of particles a and b closest in rapidity y, a measure of relativistic velocity along the
beam axis, and azimuthal angle φ around the same axis, i.e. minimising ∆2 = (ya − yb)2 +
(φa − φb)2. We then iterate over this clustering sequence, starting from the full jet and
proceeding by:

1. Declustering the current (pseudo)jet into two transverse momentum ordered pseudo-
jets a and b such that pt,a > pt,b, and where we consider b to be the emission of the
(a+ b) emitter.
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Figure 1. The Lund plane representation of a jet (left) where each emission is positioned according
to its ∆ and kt coordinates, and the corresponding mapping to a binary Lund tree of tuples (right).
The thick blue line represents the primary sequence of tuples Lprimary.
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(a+ b) emitter.
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deep learning models are applied, and good performance was observed for tagging boosted
electroweak bosons. However, the main focus of ref. [33] was the primary Lund plane,
which inevitably leads to some loss of information due to the omission of the secondary
and tertiary splittings. In this article, we propose LundNet, a new deep learning model
capable of digesting the full Lund plane. Graph neural networks are used in this model to
better exploit the structural information associated with the Lund plane representation of
a jet, leading to significantly improved performance on a range of jet tagging benchmarks.

The LundNet model starts with transforming the Lund tree into a graph, where each
node corresponds to a Lund declustering and carries the tuple of kinematic variables T (i) as
its input features, and bidirectional edges are formed following the structure of the Lund
declustering tree. The graph network architecture is adapted from the ParticleNet [18]
model, with the EdgeConv operation proposed in ref. [41] as a core step. Figure 3(a)
illustrates how EdgeConv operates for one node (the highlighted one) in the Lund tree. It
consists of two steps: first, a shared multi-layer perceptron (MLP) is applied to each of
its incoming edges, using features of the node pair connected by the edge as inputs, and
produces a learned “edge feature”. As the Lund tree is a binary tree, there are only up to
three edges for each node, which do not require a nearest-neighbour search, therefore the
computational cost is much lower than for the ParticleNet model. As shown in figure 3(b),
we use two layers for this shared MLP, each consisting of a linear layer followed by a
batch normalization (BN) [42] and a ReLU activation [43]. Then, an aggregation step is
performed for the node by taking an element-wise average of the learned edge features of
all the incoming edges. A shortcut connection [44] is also added to take the original node
features into account directly, and the node feature is then updated to the new value. This
operation is performed for all the nodes using the same shared MLPs, therefore updating
all the node features but keeping the graph structure unchanged.

The architecture of the LundNet model is shown in figure 3(c). We stack six such
EdgeConv blocks to form a deep graph network. The number of channels of the MLPs
are (32, 32), (32, 32), (64, 64), (64, 64), (128, 128) and (128, 128) for the six EdgeConv
blocks, respectively. Outputs from these EdgeConv blocks are concatenated per node and
further processed by another MLP with 384 channels to better aggregate features learned
at different stages. A global average pooling is applied afterwards to read out information
from all nodes in the graph. This is followed by a fully connected layer with 256 units and
a dropout layer with a drop probability of 0.1, before the final classification output.

The LundNet model uses the Lund kinematic variables defined in equation (2.1) as the
input node features. Two variants of the LundNet models are investigated in this article.
The first one uses all five Lund variables,

(ln kt, ln∆, ln z, lnm,ψ) (3.1)

as input features to extract as much information as possible from the Lund plane to max-
imize the jet tagging performance and is referred to as LundNet-5. The second one uses
only three Lund variables,

(ln kt, ln∆, ln z) (3.2)
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deep learning models are applied, and good performance was observed for tagging boosted
electroweak bosons. However, the main focus of ref. [33] was the primary Lund plane,
which inevitably leads to some loss of information due to the omission of the secondary
and tertiary splittings. In this article, we propose LundNet, a new deep learning model
capable of digesting the full Lund plane. Graph neural networks are used in this model to
better exploit the structural information associated with the Lund plane representation of
a jet, leading to significantly improved performance on a range of jet tagging benchmarks.

The LundNet model starts with transforming the Lund tree into a graph, where each
node corresponds to a Lund declustering and carries the tuple of kinematic variables T (i) as
its input features, and bidirectional edges are formed following the structure of the Lund
declustering tree. The graph network architecture is adapted from the ParticleNet [18]
model, with the EdgeConv operation proposed in ref. [41] as a core step. Figure 3(a)
illustrates how EdgeConv operates for one node (the highlighted one) in the Lund tree. It
consists of two steps: first, a shared multi-layer perceptron (MLP) is applied to each of
its incoming edges, using features of the node pair connected by the edge as inputs, and
produces a learned “edge feature”. As the Lund tree is a binary tree, there are only up to
three edges for each node, which do not require a nearest-neighbour search, therefore the
computational cost is much lower than for the ParticleNet model. As shown in figure 3(b),
we use two layers for this shared MLP, each consisting of a linear layer followed by a
batch normalization (BN) [42] and a ReLU activation [43]. Then, an aggregation step is
performed for the node by taking an element-wise average of the learned edge features of
all the incoming edges. A shortcut connection [44] is also added to take the original node
features into account directly, and the node feature is then updated to the new value. This
operation is performed for all the nodes using the same shared MLPs, therefore updating
all the node features but keeping the graph structure unchanged.

The architecture of the LundNet model is shown in figure 3(c). We stack six such
EdgeConv blocks to form a deep graph network. The number of channels of the MLPs
are (32, 32), (32, 32), (64, 64), (64, 64), (128, 128) and (128, 128) for the six EdgeConv
blocks, respectively. Outputs from these EdgeConv blocks are concatenated per node and
further processed by another MLP with 384 channels to better aggregate features learned
at different stages. A global average pooling is applied afterwards to read out information
from all nodes in the graph. This is followed by a fully connected layer with 256 units and
a dropout layer with a drop probability of 0.1, before the final classification output.

The LundNet model uses the Lund kinematic variables defined in equation (2.1) as the
input node features. Two variants of the LundNet models are investigated in this article.
The first one uses all five Lund variables,

(ln kt, ln∆, ln z, lnm,ψ) (3.1)

as input features to extract as much information as possible from the Lund plane to max-
imize the jet tagging performance and is referred to as LundNet-5. The second one uses
only three Lund variables,

(ln kt, ln∆, ln z) (3.2)

– 6 –

https://doi.org/10.1007/JHEP03(2021)052


Je
t T

ag
gi

ng
 in

 th
e 

Er
a 

of
 D

ee
p 

Le
ar

ni
ng

 - 
Se

pt
em

be
r 2

5,
 2

02
3 

- H
ui

lin
 Q

u 
(C

ER
N

)

LUNDNET: PERFORMANCE
LundNet achieves very high performance at significant lower computational cost than ParticleNet 

due to fewer number of neighbors in a binary tree & static graph structure 

Moreover, LundNet provides a systematic way to control the robustness of the tagger 

the non-perturbative region can be effectively rejected by applying a kt cut on the Lund plane
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Figure 6. Background rejection 1/εQCD versus signal efficiency εTop for top jet tagging with
transverse momentum pt > 500GeV.

about the structure of only one of the initial decay products of the original top quark,
limiting the performance that can be achieved without input from secondary planes. It is
however interesting to see that in this process with more complex topology, the LundNet-5
model provides a substantial performance gain over existing state-of-the-art methods such
as ParticleNet. This is due to the nature of its input, which contains already high-level
kinematic information about the radiation patterns of the jet, making it much simpler for
the neural network to learn how to distinguish signals with more involved signatures. Thus
the LundNet-3 model achieves almost the same signal purity as the ParticleNet algorithm,
despite having as input only a reduced 3-tuple of kinematic variables per node and taking
about an order of magnitude less time to train. Interestingly, the performance gap between
the two LundNet taggers is entirely due to the addition of the subjet mass and azimuthal
angle ψ to the input features of each declustering for the LundNet-5 model.

4.3 Quark/gluon discrimination

Our final benchmark considers the discrimination between quark and gluon initiated jets,
a core challenge in collider physics which has seen much research in recent years [8, 52–58].
For this study, we consider a signal sample of 500k quark-initiated jets obtained through
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Number of Training time Inference time
parameters [ms/sample/epoch] [ms/sample]

LundNet 395k 0.472 0.117

ParticleNet 369k 3.488 1.036

Lund+LSTM 67k 0.424 0.131

Table 2. Summary for each model of the number of parameters, training time per sample and
epoch, and inference time per sample. The time is measured in milliseconds as obtained when
running the models on an Nvidia GTX 1080 Ti card.

Figure 12. Inference time per jet of the LundNet model as a function of the mean number of Lund
declusterings per 2TeV QCD jet. Each circle corresponds to a separate LundNet model trained for
a different kt cut, as indicated in the figure text.

needed for the Lund+LSTM model to converge. Due to its increased number of Edge-
Conv blocks, the LundNet model has 26k more parameters than ParticleNet. However, the
direct use of the Lund tree as the graph structure removes the need for a costly nearest-
neighbour search and also significantly reduces the number of edges for each node, therefore
increasing both the training and inference speed by almost an order of magnitude. This
is compounded by the fact that due to their higher-level kinematic inputs, the LundNet
models take significantly less epochs to converge to a good solution.3

3We note that in this benchmark the time needed to pre-process jets from list of particles to input data
to each model is not included. Due to its reliance on recursion, our python implementation takes about 4.3
ms per jet to recluster a jet and transform the clustering tree into a graph of Lund nodes. This is however
completely dependent on the data format used when saving Pythia events and can be therefore significantly
reduced through a more efficient processing pipeline implementation.
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Figure 8. Performance εW√
εQCD

versus resilience to non-perturbative effects.

5.1 Non-perturbative effects

Beyond its raw performance, it is important for practical applications that a tagger be
relatively robust to model-dependent non-perturbative effects. To carry out studies of
sensitivity to non-perturbative effects, we compare performance between a data sample of
both 50k signal and background jets produced at parton level, and a sample obtained with
hadronisation and underlying event models turned on in the event generator. The same
model, trained on hadron-level data, is evaluated on both samples for the comparison. For
this study, we use the same 2TeV W jet sample as was used in section 4.1 as well as the
corresponding models shown in figure 5, which are now used to label jets from both parton
and hadron-level data.

Figure 8 shows the robustness of the tagger in conjunction with its performance. This
robustness is measured through the resilience ζNP [59], calculated using both the efficiency
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TAGGER CALIBRATION IN DATA
Crucial to calibrate these taggers in real data for them to be used in analyses 

Top/W tagging efficiency 

measured using the single-µ sample enriched in semi-leptonic ttbar events 

fit jet mass templates in the “pass” and “fail” categories simultaneously to extract efficiency in data 

simulation-to-data scale factors SF := eff(data) / eff(MC) derived to correct the simulation 

jet mass scale and resolution scale factors can also be extracted 

Mistag rates of background jet typically derived directly from analysis-specific control regions
48
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Calibration of the cc-tagger

q Need to measure ParticleNet cc-tagging efficiency in data
§ no pure sample of H → cc jets (or even Z → cc) in data

§ using g → cc in QCD multi-jet events as a proxy

q Difficulty: select a phase-space in g → cc that resembles H → cc
§ solution: a dedicated BDT developed to distinguish hard 2-prong splittings

(i.e., high quark contribution to the jet momentum) from soft cc radiations 
(i.e., high gluon contribution to the jet momentum)

§ also allows to adjust the similarity between proxy and signal jets

§ by varying the sfBDT cut — treated as a systematic uncertainty

q Perform a fit to the secondary vertex mass shapes in the “passing” 
and “failing” regions simultaneously to extract the scale factors

§ three templates: cc (+ single c), bb (+ single b), light flavor jets

q Derived cc-tagging scale factors typically 0.9—1.3
§ corresponding uncertainties are 20—30%

g

c-
c

g

c
c-

g→cc (all)
g→cc (sfBDT>0.85)
g→cc (sfBDT>0.90)
g→cc (sfBDT>0.95)

H→cc

ParticleNet cc discriminant

A.U
.

H → cc like Soft radiations:
Dominant contribution! 

Effects of the BDT
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