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Unfolding
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Inversion

e Conventional LHC analysis involves comparing measured data with MC events simulated under NP hypothesis.
e Reconstructed LHC events present a convoluted version of the true underlying physics.

e Forward simulation chain can be highly resource intensive.

[- Invert simulation chain — apply on measured data — reconstruct parton-level }
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— compare new physics hypotheses at the parton-level.
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Inversion

4 Bin-independent 4 Able to invert multi-dimensional d.o.f.

Possible with machine learning based generative models.

* Variational Auto Encoders (VAE) * Normalizing Flows (NF)

* Generative Adversarial Networks (GAN)

[Bellagente, Butter, Kasieczka, Plehn, Winterhalder (2020)]
[Bellagente, Butter, Kasieczka, Plehn, Rousselot, Winterhalder, Ardizzone, Kothe (2020)]
[Andreassen, Komiske, Metodiev, Nachman, Thaler (2020)]
[Komiske, McCormack, Nachman (2021)]



Variational Auto Encoder (VAE)
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e The Encoder maps the input detector data d to a more tractable latent space z = E(d) while preserving the
essential features.

* The decoder maps 7 to the parton level p’ = D(z) = E(I(d)).

* Training goals involve minimizing the reconstruction error (how well the Decoder can generate parton data)

[Otten, Caron, Swart, Beekveld, Hendriks, Leeuwen, Podareanu, Austri, Verheyen (2019)]



Generative Adversarial Network (GAN)

e [Bellagente, Butter, Kasieczka, Plehn, Winterhalder(2019)]
| In GANs, the generator and discriminator network | [Butter, Plehn, Winterhalder(2019)]
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* Discriminator works to distinguish generated data

{xg} from truth data {x,}. [D(xp) = 1, D(x;) — O] piscriminator = =108 D), » (—log( QUM

* Generator works to fool the discriminator such that LGenerator = <_108D(x)>prG
D(x;) — 1.



Normalizing flows

e Series of bijective layers that transform complex (Y ) to simple probability distributions (Z).

Z=g(Y)
2: Invertible function

e Tractable Jacobian J : py (V) = p,(g(y)J

[ Sampling and density estimation.
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* Bijective map between parton-level and detector-level phase space

Forward simulation: g —»

Aparton Bl rerrrercrrrsesresrmreerellly [ “detector
Fparton < Unfolding: g Fdetoctor [Bellagente, Butter, Kasieczka, Plehn, Rousselot, Winterhalder, Ardizzone, Kothe (2020)]




Conditional INN * Generate probability distributions at the parton-level,
given detector-level events x ...

Cparton) e 8 Coparions / Wderector)) = » () — Conditional on x ...,
RS Unfoldlng g(r f(x )) .
detector — Xparon Mapped with 7

[Bellagente, Butter, Kasieczka, Plehn, Rousselot, Winterhalder, Ardizzone, Kothe (2020)]

Conditional on

Target phase space for unfolding P ()
can be chosen flexibly to include:
Miet radiation Training
Particle decays < R
t t
pZ(Z) 4 L1 \ parton\*parton .
Input Output
'2 | Y2 Xparton
Unfolding " [Image adapted from Nguyen, Ardizzone, Kothe (2019)

and talk by A. Butter at Pheno-2022]
* We use the Bayesian version of cINN

> Stable network predictions
> Allows the estimation of training-related uncertainties.

[Butter, Heimel, Hummerich, Krebs, Plehn, Rousselot, Vent (2021)]



CP measurement in Higgs-top interactions

* New sources of CPV interactions can explain the matter-antimatter

asymmetry in the universe.

e CPV in hVV interactions is extensively tested at the LHC.

[ See for instance: G. Aad et al. (1506.05669), G. Aad et al. (1602.04516), A. M. Sirunyan et al. (1707.00541), A. M. Sirunyan et al. D) — — — — — —

(1903.06973), A. M. Sirunyan et al.(1901.00174), G. Aad et al. (2002.05315), Bernreuther, Gonzalez, Wiebusch (2010), Englert,
Goncalves, Mawatari, Plehn (2012), Djouadi, Godbole, Mellado, Mohan (2013), Anderson, Bolognesi, Caola, Gao et al. (2013)]

e CPV in hff couplings manifest at tree-level:
— desirable choice: /111

® pp — h (+ jets): indirect constraints.

[Duca, Kilgore, Oleari, Schmidt, Zeppenfeld (2001), Klamke, Zeppenfeld (2007), Dolan, Harris, Jankowiak, Spannowsky (2014)]

e pp — tth: opportunity to directly probe a and «,

[Buckley, Goncalves (2016), Azevedo, Onofre, Filthaut, Goncalo (2017)]

thhf(cosa + 1y sIna) ¢

Current limit (ATLAS: 2004.04545):
la| < 43%at 95 % CL

Improved statistics @ HL-LHC paves the pathway for precision studies.




tt(h — yy) @ HL-LHC

Importance matrix at the non-linear level

0* - Information I' in CP-even observables
relative to full information

myy1 0.31

My, pr,n Mg bs A®Pg Ang my, mwym 6
[RKB, Goncalves, Kling (2021)]

Sensitive only to non-linear new physics effects.



CP-odd observables
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[RKB, Goncalves, Kling (2021)] information from CP observables.



Unfolding semileptonic 77/ events pp — tth — (t = £uvb)(f = jjb)(h — yy)

= Parton-level: Acceptance cuts
12420+ 2y +v+2) Iyl <4, Inl <5, Inel <4, In|<4
= Detector-level: pry>25GeV, pr;>25GeV, pp,>15GeV, p;, > 15GeV

12+ 2b+ 2y + MET+ < 6 jets inclusive

Questions:

% Can the unfolding model correctly reconstruct the two hard jets at the parton level from a
variable number of jets at the detector level?

Y How well can the dedicated observables be reconstructed?

% How model-dependent is the training?



Event parametrization

e Event information at the parton level can be parametrised through the 4-momentum of the findl
state particles — may include redundant d.o.f.

® Reconstruction of sharp kinematic features like mass peaks can be challenging:
v’ Can be improved by adding targeted maximum mean discrepancy loss:

M Affects only the target distributions [Butter, Plehn, Winterhalder (2019)]
. [Bellagente, Butter, Kasieczka, Plehn, Rousselot,
g Avoids |C"‘96 model dependence Winterhalder, Ardizzone, Kothe (2020)]

lComplicaﬁons in training and performance limitations.

Alternative approach:

— directly learn invariant mass features and important

° ° ? m ‘ 9 m
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— may provide direct access to the most important CP-
even and CP-odd observables.



Jet combinatorics

Parton level truth and unfolded top invariant masses m, and m,
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% Unfolded distributions in good agreement with parton level truth despite added combinatorial
ambiguity at the detector level.

ISR

non-ISR

% Truth distributions within 16 error bands.



Reconstruction of dedicated observables

gen

Parton level truth and unfolded SM for O, A¢, , and b,.
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% Unfolded distributions in close agreement with truth:
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v Close agreement even for observables not included in event parametrization.
v Full phase space reconstruction.

% Potential differences from the truth are covered by the uncertainty estimates of the
Bayesian network.




Model dependence | unfolding SM events using networks trained on events with different

amounts of CP-violation.

We train 3 networks on a = + 7/4, — n/4 and SM, respectively
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% Networks trained on a = z/4 and —z/4 show only a slight bias towards broader 6 and flatter
b, distributions.

% ~ 10 — 20 % bias = much smaller than the changes at parton truth from varying «.




Model dependence Unfolding events with CP-violation using a network trained on SM

- o events.

Train network on SM dataset

Unfold a = + #/4, — 7/4 and SM dataset
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% Again, the effect of bias is much smaller than the effect of « on the data.




Outlook

e Generative unfolding makes it possible to invert high-dimensional distributions and full
phase-space reconstruction.

* The trained cINN behaves as an efficient kinematic reconstruction algorithm capable of
tackling complex reconstruction challenges.

* The trained unfolding network was able to
o extract various CP observables at the parton level with appropriate phase space
parametrization.
* resolve jet combinatorial ambiguity.
* absolve any large model-dependence.

* Promising outlook for an experimental study, with a proper treatment of statistical
limitations, continuum backgrounds, calibration, and iterative improvements of the
unfolding network.
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