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Unfolding

ℒ Parton-level

Forward simulation

Showering, 
hadronization

Detector 
simulation

Inversion 

• Conventional LHC analysis involves comparing measured data with MC events simulated under NP hypothesis.  

• Reconstructed LHC events present a convoluted version of the true underlying physics. 

• Forward simulation chain can be highly resource intensive. 

Invert simulation chain  apply on measured data  reconstruct parton-level→ →

 compare new physics hypotheses at the parton-level. →



Unfolding

 Bin-independent 

Possible with machine learning based generative models.

 Able to invert multi-dimensional d.o.f.

ℒ Hard scattering

Forward simulation

Showering, 
hadronization

Detector 
simulation

Inversion 

[Bellagente, Butter, Kasieczka, Plehn, Winterhalder (2020)]  
[Bellagente, Butter, Kasieczka, Plehn, Rousselot, Winterhalder, Ardizzone, Kothe (2020)]   

[Andreassen, Komiske, Metodiev, Nachman, Thaler (2020)] 
[Komiske, McCormack, Nachman (2021)]

•Variational Auto Encoders (VAE) 

•Generative Adversarial Networks (GAN) 

•Normalizing Flows (NF) 



Variational Auto Encoder (VAE)

• The Encoder maps the input detector data  to a more tractable latent space  while preserving the 
essential features. 

•The decoder maps  to the parton level . 

•Training goals involve minimizing the reconstruction error (how well the Decoder can generate parton data)

d z = E(d)

z p′ = D(z) = E(l(d))
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[Otten, Caron, Swart, Beekveld, Hendriks, Leeuwen, Podareanu, Austri, Verheyen (2019)]



Generative Adversarial Network (GAN)
[Bellagente, Butter, Kasieczka, Plehn, Winterhalder(2019)] 

[Butter, Plehn, Winterhalder(2019)]

LDiscriminator = ⟨−logD(x)⟩x∼Pp
+ ⟨−log(1 − D(x))⟩x∼PG

LGenerator = ⟨−logD(x)⟩x∼PG

[Image from Bellagente, Butter, 
Kasieczka, Plehn, Winterhalder  

(2019)]

•Discriminator works to distinguish generated data 
 from truth data . [ ] 

•Generator works to fool the discriminator such that 
. 

{xG} {xp} D(xP) → 1, D(xG) → 0

D(xG) → 1

In GANs, the generator and discriminator network 
competes against each other. 



Normalizing flows

• Series of bijective layers that transform complex (  ) to simple probability distributions ( ). 

• Tractable Jacobian  :    

Sampling and density estimation. 

• Bijective map between parton-level and detector-level phase space 

Y Z

J pY (y) = pZ (g(y))J  
: Invertible function 

Z = g(Y )
g

[Image adapted from Nguyen, Ardizzone, Kothe (2019) 
and talk by A. Butter at Pheno-2022]Inversion

Training

pZ(z)

z x

pY(y)

(xparton
rparton) (xdetector

rdetector)
Forward simulation: ḡ →

 Unfolding: ← g [Bellagente, Butter, Kasieczka, Plehn, Rousselot, Winterhalder, Ardizzone, Kothe (2020)]



Conditional INN • Generate probability distributions at the parton-level, 
given detector-level events xdetector

Unfolding

Training

pZ(z)

z xparton

pparton(xparton)

Conditional on 

pdetector(xdetector)

(xparton) (r)
ḡ(xparton, f(xdetector)) →

 Unfolding: ← g(r, f(xdetector))

Target phase space for unfolding 
can be chosen flexibly to include: 

jet radiation 
Particle decays

 Conditional on  
  mapped with 

⟶ xdetector
⟶ xparton r

•We use the Bayesian version of cINN 
Stable network predictions 
Allows the estimation of training-related uncertainties. 

[Butter, Heimel, Hummerich, Krebs, Plehn, Rousselot, Vent (2021)] 

[Image adapted from Nguyen, Ardizzone, Kothe (2019) 
and talk by A. Butter at Pheno-2022]

[Bellagente, Butter, Kasieczka, Plehn, Rousselot, Winterhalder, Ardizzone, Kothe (2020)]



• : indirect constraints. 

• : opportunity to directly probe  and  

pp → h (+ jets)

pp → tt̄h α κt

• New sources of CPV interactions can explain the matter-antimatter 
asymmetry in the universe. 

• CPV in  interactions is extensively tested at the LHC. hVV

CP measurement in Higgs-top interactions

ℒ = −
mt

v
κt h t̄ (cos α + i γ5 sin α) t

• CPV in  couplings manifest at tree-level:                                                                             
 desirable choice: 

hff̄
→ htt̄

[ See for instance: G. Aad et al. (1506.05669), G. Aad et al. (1602.04516), A. M. Sirunyan et al. (1707.00541), A. M. Sirunyan et al. 
(1903.06973), A. M. Sirunyan et al.(1901.00174), G. Aad et al. (2002.05315), Bernreuther, Gonzalez, Wiebusch (2010), Englert, 
Goncalves, Mawatari, Plehn (2012), Djouadi, Godbole, Mellado, Mohan (2013), Anderson, Bolognesi, Caola, Gao et al. (2013)]

Improved statistics @ HL-LHC paves the pathway for precision studies.

Current limit (ATLAS: 2004.04545): 
 at CL|α | < 430 95 %[Duca, Kilgore, Oleari, Schmidt, Zeppenfeld (2001), Klamke, Zeppenfeld (2007), Dolan, Harris, Jankowiak, Spannowsky (2014)]

[Buckley, Goncalves (2016), Azevedo, Onofre, Filthaut, Goncalo (2017)]



 @ HL-LHCtt̄(h → γγ)
Importance matrix at the non-linear level

Sensitive only to non-linear new physics effects.

[RKB, Goncalves, Kling (2021)]



CP-odd observables 

•Short lifetime for   Spin correlations can be traced back 
from their decay products. 

•CP-odd observables constructed from antisymmetric tensor products 
: 

t (10−25 s) →

ϵ(pt, pt̄, pi, pj) ∼ ϵμνρσ pμ
t pν

t̄ pρ
i pσ

j

Δϕtt̄
ij =sgn [ ⃗pt⋅( ⃗pi× ⃗pj)] arccos[ ⃗pt× ⃗pi

| ⃗pt× ⃗pi |
⋅

⃗pt× ⃗pj

| ⃗pt× ⃗pj | ]

[Mileo, Kiers, Szynkman, Crane, Gegner (2016); Goncalves, Kong, Kim (2018)]; RKB, Goncalves, Kling (2021)]
 Spin correlations scale with the spin analysing power .← βi

Use Machine learning techniques to maximize the extraction of NP 
information from CP observables.

Parton-level 

• Kinematic reconstruction efficiency is limited at the detector level  

A
B

 B/A ∼ 0.42

1
Γ

dΓ
d cos ξi

=
1
2 (1 + βiPt cos ξi) Fisher Info = 𝔼 [ ∂ log p(x |κt, α)

dα
∂ log p(x |κt, α)

dα ]

[RKB, Goncalves, Kling (2021)]



➡ Parton-level:  
  

➡ Detector-level:  
       jets inclusive

1ℓ + 2b + 2γ + ν +2j

1ℓ + 2b + 2γ + MET + ≤ 6

★ Can the unfolding model correctly reconstruct the two hard jets at the parton level from a 
variable number of jets at the detector level?  

★ How well can the dedicated observables be reconstructed? 

★ How model-dependent is the training? 

Unfolding semileptonic  events tt̄h  pp → tt̄h → (t → ℓνb)(t̄ → jjb̄)(h → γγ)

pT,b > 25 GeV , pT,j > 25 GeV , pT,ℓ > 15 GeV , pT,γ > 15 GeV

|ηb | < 4 , |ηj | < 5 , |ηℓ | < 4, |ηγ | < 4
Acceptance cuts 

Questions: 



Event parametrization

• Event information at the parton level can be parametrised through the 4-momentum of the final 
state particles   may include redundant d.o.f.  

• Reconstruction of sharp kinematic features like mass peaks can be challenging:  
✓  Can be improved by adding targeted maximum mean discrepancy loss: 

→

[Butter, Plehn, Winterhalder (2019)] Affects only the target distributions 
 Avoids large model dependence 
 Complications in training and performance limitations. 

[Bellagente, Butter, Kasieczka, Plehn, Rousselot, 
Winterhalder, Ardizzone, Kothe (2020)]

Alternative approach:  
 directly learn invariant mass features and important 

observable with appropriate phase-space 
parametrization. 

 may provide direct access to the most important CP-
even and CP-odd observables.

→

→

 

 

⃗ptt̄, mtℓ, | ⃗pCS
tℓ | , θCS

tℓ , ϕCS
tℓ , mth,

sign(Δϕtt̄
ℓν) mWℓ

| ⃗ptt̄
ℓ | , θtt̄

ℓ , ϕtt̄
ℓ , | ⃗ptt̄

ν |
sign(Δϕtt̄

du) mWh
, | ⃗ptt̄

d | , θtt̄
d , Δϕtt̄

ℓd, | ⃗ptt̄
u |



Jet combinatorics
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★ Unfolded distributions in good agreement with parton level truth despite added combinatorial 
ambiguity at the detector level.  

★ Truth distributions within  error bands.1σ

Parton level truth and unfolded top invariant masses  and mtℓ mth
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Reconstruction of dedicated observables
Parton level truth and unfolded SM for ,  and . θCS Δϕtℓth b4

★ Unfolded distributions in close agreement with truth: 
✓ Close agreement even for observables not included in event parametrization. 
✓ Full phase space reconstruction. 

★ Potential differences from the truth are covered by the uncertainty estimates of the 
Bayesian network. 



Model dependence

★ Networks trained on  and  show only a slight bias towards broader  and flatter 
 distributions. 

★ bias  much smaller than the changes at parton truth from varying .

α = π/4 −π/4 θCS
b4

∼ 10 − 20 % → α
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We train 3 networks on  and SM, respectivelyα = + π/4, − π/4
Unfold SM dataset
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Unfolding SM events using networks trained on events with different 
amounts of CP-violation. 



Model dependence

★Again, the effect of bias is much smaller than the effect of  on the data.  α

Train network on SM dataset

Unfold  and SM datasetα = + π/4, − π/4
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Unfolding events with CP-violation using a network trained on SM 
events. 



Outlook

• Generative unfolding makes it possible to invert high-dimensional distributions and full 
phase-space reconstruction.  

• The trained cINN behaves as an efficient kinematic reconstruction algorithm capable of 
tackling complex reconstruction challenges.  

• The trained unfolding network was able to 
• extract various CP observables at the parton level with appropriate phase space 

parametrization. 
• resolve jet combinatorial ambiguity. 
• absolve any large model-dependence.    

• Promising outlook for an experimental study, with a proper treatment of statistical 
limitations, continuum backgrounds, calibration, and iterative improvements of the 
unfolding network.



Thank you


