

Search for new Higgs bosons via same-sign top quark pair production + a jet at CMS, <u>arXiv:2311.03261</u>

Efe Yazgan National Taiwan University

TOPLHCWG Meeting

29 November — 1 December 2023

Introduction

- In these « dark times between experimental breakthroughs »* we ask if there are additional scalar doublets.
- If N(doublets) ≥ 2, baryon asymmetry of the Universe may be explained.

Introduction

- 2HDM introduces five scalar bosons: H^{\pm}, H, h, A
- When \mathbb{Z}_2 symmetry is dropped in 2HDM to allow flavor changing neutral currents (FCNC) —> generalized 2HDM (g2HDM)
 - Many parameters and extra processes arise.
 - Alignment emerges when no \mathbb{Z}_2 symmetry and all extra Higgs quartic couplings $\mathcal{O}(1)$ + extra top Yukawa couplings $\mathcal{O}(1)$ -> Electroweak baryogenesis, lack of FCNC (e.g. $t \rightarrow ch_{125}/uh_{125}$ or $h_{125} \rightarrow \mu \tau/e \tau$), ... may be explained.
 - sub-TeV H[±], H, A bosons may still exist <-> New physics scale
 <10-20 TeV.
- Alignment limit: $\cos \gamma_{H-h} pprox 0$
 - h becomes h_{125}
 - No HVV, AVV interactions.
 - Suppresses FCNC interactions for h but allows for H and A.

The signal

 $\begin{array}{l} qg \rightarrow tH \rightarrow tt\overline{q} \\ \rightarrow (\ell^+ b\nu)(\ell^+ b\nu)\overline{q} \end{array}$

- Probe extra Yukawa couplings with top quarks within g2HDM:
 - $0.1 < \rho_{tq} < 1.0$ with one coupling (ρ_{tu} or ρ_{tc}) at a time assuming all other extra Yukawa couplings are zero.
 - No H—A interference: Only A (or equivalently only H): $200 \le m_{A/H} \le 1000 \text{ GeV}$
 - With H—A interference assuming $m_A m_H = 50$ GeV: $250 \le m_A \le 1000$ GeV

 $\sigma(\text{inter.}) \approx \sigma(\text{non-inter.}) \\ \text{for } m_A - m_H \gtrsim 100 \text{ GeV} \\ \sigma = 0 \text{ for } m_A = m_H$ $\sigma(tt\overline{u}) \approx 1 \times 10^{-4} \text{ to } \approx 7 \times 10^{-1} \text{ pb} \\ \sigma(tt\overline{c}) \approx 5 \times 10^{-6} \text{ to } \approx 7 \times 10^{-2} \text{ pb}$ $MG5_aMC + PYTHIA8 [MLM]$

Event Selection and Background Composition

- Search performed in $e^\pm e^\pm, \mu^\pm \mu^\pm, e^\pm \mu^\pm$ categories
- $p_T(\ell_1) > 30$ GeV, $p_T(\ell_2) > 20$ GeV; $|\eta(e)| < 2.5, |\eta(\mu)| < 2.4$
- Veto events with a third lepton with $p_{T}(\ell) > 10 \,\, {\rm GeV}$
- $\bullet \; \Delta R(\mathcal{\ell}_1, \mathcal{\ell}_2) > 0.3$
- $\bullet \; m_{\ell\ell} > 20 ~{\rm GeV}$
- Veto events with $60 < m(\mathcal{\ell}_1, \mathcal{\ell}_2) < 120~{\rm GeV}$
- $p_T^{miss} > 30 \text{ GeV}$
- At least three jets with n(i) > 30 GoV |ata(i)| < 2.4
- $p_T(j) > 30 \text{ GeV}, |eta(j)| < 2.4, \Delta R(j, \ell) > 0.4$
- BDT > -0.6 to have improved stability of the fit and its uncertainties.

Inputs to the BDTs

Table 1: Input variables of the BDT. Jets and leptons are ordered by p_{T} .					
Input variables of the BDT					
$\overline{\text{CvsL}(j_a)}$	a = 1, 2, 3	Charm- vs light-quark jet identification variable			
$CvsB(j_a)$	a = 1, 2, 3	Charm- vs bottom-quark jet identification variable			
$\Delta R(j_a, j_b)$	$1 \le a < b \le 3$	Angular separation between jets			
$m(j_a, j_b)$	$1 \le a < b \le 3$	Invariant mass of jet pairs			
$\Delta R(j_a, l_b)$	a = 1, 2, 3; b = 1, 2	Angular separation between jet and lepton			
$m(j_a, l_b)$	a = 1, 2, 3; b = 1, 2	Invariant mass of jet-lepton pairs			
$p_{\rm T}(\ell_a)$	<i>a</i> = 1,2	Transverse momentum of leptons			
$m(\ell_1, \ell_2, j_a)$	a = 1, 2, 3	Invariant mass of the two leptons plus the highest $p_{\rm T}$ jet			
$m(\ell_1,\ell_2)$		Invariant mass of the two leptons			
$H_{ m T}$		Scalar $p_{\rm T}$ sum of the jets			
$p_{\mathrm{T}}^{\mathrm{miss}}$	and a second	Missing transverse momentum			

- BDTs trained independently for 4 data-taking periods x [10 mass (w/o interference) + 9 mass (w interference)] x ($\rho_{tu} = 0.4$ and $\rho_{tc} = 0.4$) —> 152 BDTs in total.
- MC samples w/ $\rho_{tu}(\rho_{tc}) = 0.4$ to scale limits for other couplings for each mass.
- For $\rho_{tc} = 0.4$, for a signal eff. ~96%, background rejection rates:
 - 50% ($m_A = 200 \text{ GeV}$)
 - 76% ($m_A = 1$ TeV).

Jet Flavor Identification

• DeepJet algorithm: Flavor identification using global variables, charged/neutral particle and secondary vertex kinematics in the jets. JINST 15 (2020) P12012

BDT Distributions for Signal Extraction

• 4 bins of BDT score in each decay mode simultaneously fit to extract limits for each signal mass-coupling hypothesis.

% Effect of Nuisances on Pre-fit Expected Event Yields

a a chun an ann an Ann Ann Ann an		n neo Kuonkan nen	Category	an the state of the second	Corre	lated across
Uncertainty source	Shape	$\mathrm{e}^\pm\mathrm{e}^\pm$	$\mu^{\pm}\mu^{\pm}$	$e^{\pm}\mu^{\pm}$	Years	Categories
Experimental						
Luminosity	_	1.2-2.5	1.2 - 2.5	1.2-2.5	\checkmark	\checkmark
Pileup	\checkmark	< 0.1 - 2.8	< 0.1 - 1.8	< 0.1 - 2.3	\checkmark	\checkmark
Trigger efficiency	\checkmark	0.4 - 2.6	0.2 - 1.1	0.3 - 1.2		—
L1 trigger inefficiency	\checkmark	0.1 - 0.8	0.1-0.3	0.1 - 0.4	\checkmark	\checkmark
Lepton identification	\checkmark	0.1 - 1.7	< 0.1 - 0.4	< 0.1 - 0.6	—	\checkmark
Lepton energy scale	\checkmark	—	< 0.1 - 0.2	< 0.1 - 0.2	—	\checkmark
Charge misid.	\checkmark	1.2 - 13.1	—	—	—	
Jet energy scale	\checkmark	< 0.1 - 4.5	< 0.1 - 1.7	< 0.1 - 1.5	\checkmark	\checkmark
Jet energy resolution	\checkmark	< 0.1 - 2.6	< 0.1 - 1.8	< 0.1 - 1.6	—	\checkmark
Unclustered energy	\checkmark	< 0.1 - 2.6	< 0.1 - 0.5	< 0.1 - 0.8	—	\checkmark
Jet flavor identification	\checkmark	< 0.1 - 12.1	< 0.1 - 8.8	< 0.1 - 11.6	\checkmark	\checkmark
Nonprompt lepton BG						e i i
statistical component	\checkmark	< 0.1 - 27.2	1.9–16.2	3.0-13.2	—	\checkmark
Nonprompt lepton BG		27,15,11,10	27,15,11,10	27,15,11,10		\checkmark
Theoretical						
Signal QCD scales	\checkmark	10.3 - 10.5	10.0 - 10.2	9.9-10.0	\checkmark	\checkmark
Signal PDF	\checkmark	0.7	0.6 - 0.7	0.5-0.6	\checkmark	✓ 👘
Signal parton shower	\checkmark	3.6-4.3	4.0 - 4.3	6.3–7.3	\checkmark	\checkmark
tī		6.1	6.1	6.1	\checkmark	\checkmark
VV		4.5	4.5	4.5	\checkmark	\checkmark
VBS		10.4	10.4	10.4	\checkmark	\checkmark
tīH	_	7.8	7.8	7.8	\checkmark	\checkmark
tŦW		10.7	10.7	10.7	\checkmark	\checkmark
Other backgrounds		5.4	5.4	5.4	\checkmark	\checkmark
$\rho_{tc} = 0.4, m_A = 350 \text{ GeV}, m_A - m_H = 50 \text{ GeV}$						

- Dominant systematic uncertainties
 - Flavor tagging
 - Nonprompt lepton background estimation
 - $t\overline{t}W$ cross section
 - Statistical

Results

• Results consistent with SM predictions

4
ce
)
)
)
)

- Stricter limits for
 - ρ_{tu} higher signal cross section <— PDF effect.
 - interference higher signal cross section < having A & H simultaneously.

Results

Results

ATLAS Analysis arXiv:2307.14759

- Considered ρ_{tu}/ρ_{tc} -induced same-sign top quark and ρ_{tt} -induced triple-top quark in the same umbrella w/ a general multi-lepton signature.
- No A-H interference or charm tagging
- Final limits not too different.
- ho_{tt} not easy.
 - No limit on ρ_{tt} when ρ_{tc} (or ρ_{tu})=0
 - But e.g. ρ_{tt} =0.4, $\rho_{tc} = \rho_{tu} = 0.2$, $m_{H} = 200 620$ GeV excluded

Summary

- A search for $pp \to tH/A \to tt\overline{c}$ and $pp \to tH/A \to tt\overline{u}$ presented
- No significant excess above the background observed.
- ρ_{tu} largely excluded, but still a large portion of the phase space not constrained for ρ_{tc} .
- When no A-H interference
 - $m_{\!A}$ < 920 GeV ($ho_{tu} = 0.4$) and 1000 GeV ($ho_{tu} = 1.0$) excluded.
 - $m_{\!A}$ < 770 GeV ($\rho_{tc}=1.0$) excluded.
- When A and H interfere with $m_{\!A}-m_{\!H}=50~{\rm GeV}$
 - m_A < 1000 GeV (ρ_{tu} > 0.4).
 - m_A < 340 GeV ($\rho_{tc} = 0.4$) and m_A < 810 GeV ($\rho_{tc} = 1.0$).

Additional Slides

Background Categories

Category	Samples
тт	TTTo2L
VV	WW(OS) WZ(QCD)
VBS	WpWpJJ(EWK+QCD) WLLjj ZZJJTo4L
ttH	ttH
ttW	ttWtoLnu ttWtoQQ

Category	Samples
Others	tW & tbarW
	DY
	ttZZ
	ttWW
	ttWZ
	ttWH
	ttZH
	ttZ(ll + qq)
	tZq
	tttj
	tttW
	tttt
	ZZZ
	WZZ
	WWZ
	WWW

Previous CMS Results

 Many searches performed for extra Higgs bosons but FCNC in extended Higgs sector still remains to be studied in detail.

 $H/A \rightarrow tt : EPJ C 77 (2017) 578$

- $H/A \rightarrow bb$: JHEP 08 (2018) 113
- $H/A \rightarrow \tau \tau$: JHEP 09 (2018) 007

 $H/A \rightarrow \mu\mu$: <u>PLB 798 (2019) 134992</u>

 $A \rightarrow Zh \rightarrow (ll, \nu\nu)bb$: EPJC 79 (2019) 564

 $H/A \rightarrow Z(ll)A/H(bb)$: JHEP 03 (2020) 055

 $H \rightarrow WW: \underline{\text{JHEP 03 (2020) 034}}$

 $X \rightarrow YH \rightarrow b\bar{b}b\bar{b}$: <u>PLB 842 (2023) 137392</u>

 $\phi \rightarrow \tau \tau$: <u>JHEP 07 (2023) 073</u>

 $H \rightarrow AA \rightarrow 4\gamma$: <u>PRL 131 (2023) 101801</u>

 $H \to e\mu$: <u>PRD 108 (2023) 072004</u>

 $H \rightarrow \gamma \gamma : \text{CMS-PAS-HIG-20-002}$ $\phi \rightarrow ll : \text{CMS-PAS-EXO-21-018}$ $H^{\pm} \rightarrow \tau_h \nu : \text{JHEP 07 (2019) 142}$ $H^{\pm} \rightarrow Wa : \text{PRL 123 (2019) 131802}$ $H^{\pm} \rightarrow tb : \text{JHEP 2020:096, JHEP 2020:126}$ $H^{\pm} \rightarrow cs, cb : \text{PRD 102 (2020) 072001}$ $H^{\pm} \rightarrow H(\tau\tau)W : \text{JHEP 09 (2023) 032}$ $H \rightarrow Za\gamma\gamma\ell\ell': \text{Submitted to PLB}$ $X \rightarrow HH/Y \rightarrow \gamma\gamma b\overline{b}: \text{Submitted to JHEP}$