

Inclusive and differential ttZ cross-section measurement, including interpretations, with the full ATLAS Run 2 dataset

Dominik Babál (Slovak Academy of Sciences) on behalf of the ATLAS Collaboration

LHC TOP WG meeting (29.11.2023)

Introduction

- $t\bar{t}Z$ **rare process** \rightarrow provides stringent tests of SM
- Important background for LHC searches (ttH, tt⁻tt⁻, tZ, BSM searches)
- Sensitivity to BSM physics affecting tZ coupling
- Measurements aimed at improving previous <u>inclusive</u> and <u>differential</u> results + adding <u>SMEFT</u> and <u>spin-correlations</u> interpretation

<u>ATLAS-CONF-2023-065</u>

- Refined measurement building upon previous ATLAS result (<u>EPJC 81 (2021) 737</u>)
- Z→ee/µµ, 3 channels according to tt decay →2I - all hadronic, 3I -I+jets, 4I - dileptonic)

00000

Analysis overview

This analysis:

- Full Run 2 data (140 fb⁻¹)
- Legacy ttZ measurement
- Improving previous result using same dataset

2.)

Previous ttZ results:

inclusive + differential 13 TeV; 139 fb⁻¹ EPJC 81 (2021) 737

 $\sigma_{t\bar{t}Z} = 0.99 \pm 0.05 (\mathrm{stat.}) \pm 0.08 (\mathrm{syst.})~\mathrm{pb}$

CMS

inclusive + differential + EFT 13 TeV; 77.5 fb⁻¹ <u>JHEP 03 (2020) 056</u> $\sigma_{t\bar{t}Z} = 0.95 \pm 0.05 (\text{stat.}) \pm 0.06 (\text{syst.}) \text{ pb}$

4.)

 $\frac{\delta \sigma_{t\bar{t}Z}}{\sigma_{t\bar{t}Z}} \approx 8.2\%$

 $\frac{\delta\sigma_{t\bar{t}Z}}{\sigma_{t\bar{t}Z}} \approx 9.5\%$

1.) Inclusive xs

- Addition of **2IOS channel** (previously only 3I and 4I)
- **DNNs** for region definitions and fit input

<u>Differential xs</u>

- New variables (17 vs. 9)
- New unfolding technique (PLU) with regularisation

3.) Spin correlations

- **First** interpretation for ttZ
- 9 angular distributions
- Detector-level fit

Distribution	Channel	Expected values	Observed values
$\cos \varphi$	$3\ell + 4\ell$	1 ^{+1.39} -1.38	$-0.09^{+1.34}_{-1.28}$
$\cos \theta_r^+ \cdot \cos \theta_r^-$	$3\ell + 4\ell$	$1^{+1.83}_{-1.82}$	$1.17^{+1.80}_{-1.76}$
$\cos \theta_k^+ \cdot \cos \theta_k^-$	$3\ell+4\ell$	$1^{+1.78}_{-1.78}$	$1.39^{+1.72}_{-1.73}$
$\cos \theta_n^+ \cdot \cos \theta_n^-$	$3\ell+4\ell$	$1^{+1.87}_{-1.86}$	$-1.05^{+2.06}_{-1.96}$
$\cos \theta_r^+ \cdot \cos \theta_k^- + \cos \theta_r^- \cdot \cos \theta_k^+$	$3\ell + 4\ell$	$1^{+1.93}_{-1.93}$	$0.36^{+1.99}_{-1.93}$
$\cos \theta_r^+$	$3\ell + 4\ell$	$1^{+1.81}_{-1.80}$	$1.56^{+1.86}_{-1.98}$
$\cos \theta_r^-$	$3\ell+4\ell$	$1^{+1.82}_{-1.78}$	$1.81^{+1.63}_{-1.68}$
$\cos \theta_k^+$	$3\ell+4\ell$	$1^{+1.69}_{-1.67}$	$2.00^{+1.65}_{-1.70}$
$\cos \theta_k^-$	$3\ell + 4\ell$	$1^{+1.68}_{-1.68}$	$2.31^{+1.68}_{-1.68}$

EFT interpretation

- 20 dim-6 operators
- Linear and quadratic fits
- Fisher information matrix

Analysis regions

Dilepton

- **1 OSSF** (opposite-sign-same-flavour) lepton pair with |m_µ-m₇| < **10** GeV
- p_⊥⁻ > **30, 15** GeV
- SRs inspired by the **36 fb⁻¹ analysis**
- 3 SRs based on jet and b-jet multiplicity:
 - o SR-2I-5j2b, SR-2I-6j1b, SR-2I-6j2b

Tetralepton

- At least 1 OSSF lepton pair with |m_µ-m₇| < 20 GeV
- p_T⁻¹> 27, 7, 7, 7 GeV
- At least 2 jets and 1 b-tagged jet (@85% WP)
- 2 SRs based on flavor of the lepton pair from tt
 - SR-4I-SF, SR-4I-DF
- DNN > 0.4 used to define SF region remaining part used for ZZ control region

<u>Trilepton</u>

- At least 1 OSSF lepton pair with |m_µ-m_z| < 10 GeV
- p_T⁻ⁱ> **27**, **20**, **15** GeV
- At least 3 jets and 1 b-tagged jet
 (@85% WP)
- 3 orthogonal SRs based on output nodes from multi-class DNN:
 - SR-3I-ttz, SR-3I-tzq, SR-3I-WZ

2I channel strategy

- 2I channel only in the inclusive measurement
- DNN outputs in each SR used for Profile likelihood fit (PLF)
- <u>Dominant backgrounds</u>: dileptonic tt and Z+jets
- Normalisations of Z+b and Z+c free parameters of the fit

 $t\overline{t}$ poorly modelled \rightarrow data-driven estimate:

- $t\overline{t}$ regions defined similar to SRs, but OSSF \rightarrow OSDF
- Very pure regions
- tt estimation in SRs = (data in tt regions - non-tt background in tt regions) * C_{tt}

$$C_{t\bar{t}} = \frac{N_{t\bar{t}}^{\ell\ell}}{N_{t\bar{t}}^{e\mu}},$$

3I channel strategy

- Multi-class DNN ttZ, tZq, WZ output nodes
- ttZ node output fitted, tZq and WZ used for SR definitions
- WZ+b normalisation measured in the fit
- tZq fixed to SM (low stats)

• **F-Other** (form MC)

4I channel strategy

- Leading backgrounds: tWZ and ZZ+jets
- DNN outputs used as an input for the fit
- Irreducible tWZ estimated from MC (low stats)

- ZZ+jets mostly in SF region
- **ZZ CR** for SF selection defined with DNN < 0.4
- ZZ+b normalisation extracted in the fit → CR with two bins based on b-tagging efficiency

Inclusive xs measurement

- Simultaneous profile likelihood fit in all SRs and CRs
- **12 regions** (8 SRs and 4 CRs) and **8 free parameters** in the combined fit
- Extracted signal strength (μ_{ttz}) translated to the cross section and corrected to match fiducial region (70 < m_{ff} < 110 GeV)
- <u>Main improvements:</u> DNNs, better modelling, region definitions, addition of 2I channel
- 35% reduction in uncertainty when compared to previous ttZ

Channel	$\sigma_{t\bar{t}Z}$
Dilepton	$0.84 \pm 0.11 \text{ pb} = 0.84 \pm 0.06 \text{ (stat.)} \pm 0.09 \text{ (syst.) pb}$
Trilepton	$0.84 \pm 0.07 \text{ pb} = 0.84 \pm 0.05 \text{ (stat.)} \pm 0.05 \text{ (syst.) pb}$
Tetralepton	$0.97^{+0.13}_{-0.12}$ pb = 0.97 ± 0.11 (stat.) ± 0.05 (syst.) pb
Combination $(2\ell, 3\ell \& 4\ell)$	$0.86 \pm 0.06 \text{ pb} = 0.86 \pm 0.04 \text{ (stat.)} \pm 0.04 \text{ (syst.) pb}$

Incertainty Category	$\Delta \sigma_{t\bar{t}Z} / \sigma_{t\bar{t}Z} \ [\%]$	
Background normalisations ets and $E_{\rm T}^{ m miss}$	2.0 1.9	evious tīZ
p-tagging	1.7 2.	9
$\bar{t}Z \ \mu_F$ and μ_R scales	1.6	
eptons	1.6 2 .	3
Z +jets modelling	1.5	
WZ modelling	1.1 2 .	9 sub-leading
$\bar{t}Z$ showering	1.0 3 .	1 leading
$\bar{t}Z$ A14	1.0	
Luminosity	1.0	
Diboson modelling	0.8 2.	8
Zq modelling	0.7 2.	6
PDF (signal & backgrounds)	0.6	
AC statistical	0.5	
Other backgrounds	0.5	
Fake leptons	0.4	
Pile-up	0.3	
Data-driven <i>tī</i>	0.1	
	EPJC 7	<u>ə (2019) 249</u>

 $\sigma_{t\bar{t}Z}^{\rm NLO} = 0.86 \pm 0.08 ({\rm scale}) \pm 0.03 ({\rm PDF})~{\rm pb}$

NLO $\frac{ttZ}{NLO} \approx 10\%$

Differential measurements

- Only in 3I and 4I channels
- Profile likelihood unfolding (PLU) to particle and parton level
- PLU allows for:
 - inclusion of multiple SRs and CRs,
 - free floating normalisation of the leading backgrounds,
 - pulls and constraints of the uncertainties
- <u>Absolute</u> and <u>normalised</u> distributions
- 17 observables (5 in 3I, 3 in 4I and 9 in combination)
- Tikhonov regularisation for observables featuring hadronic top

$$R(\vec{\mu}) = \exp\left[-\frac{\tau^2}{2} \sum_{i=2}^{i+1 < N_{bins}} \left((\mu_i - \mu_{i-1}) - (\mu_{i+1} - \mu_i)\right)^2\right]$$

21	Variable	Regularisation	τ^{particle}	τ^{parton}
	p_{T}^{Z}	No	-	-
	$ y^{\hat{Z}} $	No	-	-
	$\cos \theta_Z^*$	No	-	-
+ 4l				
3ℓ	p_{T}^{t}	Yes	1.5	1.4
	$p_{\mathrm{T}}^{t\bar{t}}$	Yes	1.6	1.5
	$ \Delta \phi(t\bar{t},Z) $	Yes	2.4	2.1
	m^{ttZ}	Yes	1.5	1.6
	m^{tt}	Yes	1.5	1.4
	$ y^{t\bar{t}Z} $	Yes	1.5	1.5
	H^ℓ_{T}	No	-	-
	$ \Delta \phi(Z, t_{\text{lep}}) $	No	-	-
3ℓ				
	$ \Delta y(Z, t_{\text{lep}}) $	No	-	-
	$p_{-}^{\ell, \text{non}-Z}$	No	-	_
	PΤ	110		
	N _{jets}	No	-	-
	H^ℓ_{T}	No	-	-
4ℓ	$ \Delta \phi(\ell_t^+,\ell_{\bar{t}}^-) $	No	-	-
	N _{jets}	No	-	(=

Differential results

- Unfolded distributions compared to:
 - MG5_aMC@NLO + Pythia 8 (nominal)
 - Sherpa 2.2.1 (inclusive)
 - Sherpa 2.2.11 (multi-leg)
- In general good agreement some observables suffer from bad modelling → lower p-values for H_T(I), |∆y(Z,t^I)|, p_T^{tt̄}
- **Particle level more precise** (more diagonal migration matrices)
- Measurement statistically limited (but 30% improvement when compared to previous ttZ analysis thanks to PLU, DNN, ...)

Spin correlations interpretation

- First evidence of top-quark spin correlations in • ttZ (SM expectations modified by the Z boson)
- <u>6 independent observables</u> (in tt rest frame):

 $\cos \theta_{\nu}^{+}, \quad \cos \theta_{\nu}^{-}, \quad \cos \theta_{n}^{+}, \quad \cos \theta_{n}^{-}, \quad \cos \theta_{r}^{+}, \quad \cos \theta_{r}^{-},$

Observables defined using leptons from tt • (or **lepton** + **down-type quark** from W decay)

Strategy:

- Template fit of <u>detector-level distributions</u> (unfolded distributions unusable -> would require regularisation in 4I)
- Each observable O fitted to lin. combination of spin-on and spin-off hypotheses

Coefficient	Expression	
C _{rr} C _{kk} C _{nn}	$ \begin{array}{c} -9\langle\cos\theta_{r}^{+}\cdot\cos\theta_{r}^{-}\rangle\\ -9\langle\cos\theta_{k}^{+}\cdot\cos\theta_{k}^{-}\rangle\\ -9\langle\cos\theta_{n}^{+}\cdot\cos\theta_{n}^{-}\rangle \end{array} $	spin corr.
C _{rk} C _{kn} C _{rn} C _r C _k C _n	$\begin{array}{l} -9\langle\cos\theta_{r}^{+}\cdot\cos\theta_{k}^{-}+\cos\theta_{r}^{-}\cdot\cos\theta_{k}^{+}\rangle\\ -9\langle\cos\theta_{k}^{+}\cdot\cos\theta_{n}^{-}+\cos\theta_{k}^{-}\cdot\cos\theta_{n}^{+}\rangle\\ -9\langle\cos\theta_{r}^{+}\cdot\cos\theta_{n}^{-}+\cos\theta_{r}^{-}\cdot\cos\theta_{n}^{+}\rangle\\ -9\langle\cos\theta_{k}^{+}\cdot\cos\theta_{n}^{-}-\cos\theta_{k}^{-}\cdot\cos\theta_{n}^{+}\rangle\\ -9\langle\cos\theta_{n}^{+}\cdot\cos\theta_{r}^{-}-\cos\theta_{n}^{-}\cdot\cos\theta_{r}^{+}\rangle\\ -9\langle\cos\theta_{r}^{+}\cdot\cos\theta_{k}^{-}-\cos\theta_{r}^{-}\cdot\cos\theta_{k}^{+}\rangle\end{array}$	spin cross corr.
b_r^+ b_r^- b_k^+ b_k^- b_n^+ b_n^- b_n^-	$\begin{array}{l} 3\langle\cos\theta_{r}^{+}\rangle\\ 3\langle\cos\theta_{r}^{-}\rangle\\ 3\langle\cos\theta_{k}^{+}\rangle\\ 3\langle\cos\theta_{k}^{-}\rangle\\ 3\langle\cos\theta_{n}^{+}\rangle\\ 3\langle\cos\theta_{n}^{-}\rangle\end{array}$	polarisations

Consider only 9 coefficient that are non-0 within theoretical uncertainties

$O = f_{\rm SM} \cdot O_{\rm spin-on} + (1 - f_{\rm SM}) \cdot O_{\rm spin-off}.$

Spin correlations interpretation

• Coefficients fitted **individually** and then **combined** using profiled χ^2 fit (with stat. and syst. correlations)

opening angle between charged leptons (or lepton and s-jet)			
Distribution	Channel	Expected values	Observed values
$\cos \varphi$	$3\ell + 4\ell$	$1^{+1.39}_{-1.38}$	$-0.09^{+1.34}_{-1.28}$
$\cos\theta_r^+\cdot\cos\theta_r^-$	$3\ell + 4\ell$	$1^{+1.83}_{-1.82}$	$1.17^{+1.80}_{-1.76}$
$\cos\theta_k^+\cdot\cos\theta_k^-$	$3\ell + 4\ell$	$1^{+1.78}_{-1.78}$	$1.39^{+1.72}_{-1.73}$
$\cos\theta_n^+ \cdot \cos\theta_n^-$	$3\ell + 4\ell$	$1^{+1.87}_{-1.86}$	$-1.05^{+2.06}_{-1.96}$
$\cos\theta_r^+ \cdot \cos\theta_k^- + \cos\theta_r^- \cdot \cos\theta_k^+$	$3\ell + 4\ell$	$1^{+1.93}_{-1.93}$	$0.36^{+1.99}_{-1.93}$
$\cos \theta_r^+$	$3\ell + 4\ell$	$1^{+1.81}_{-1.80}$	$1.56^{+1.86}_{-1.98}$
$\cos \theta_r^-$	$3\ell + 4\ell$	$1^{+1.82}_{-1.78}$	$1.81^{+1.63}_{-1.68}$
$\cos \theta_k^+$	$3\ell + 4\ell$	$1^{+1.69}_{-1.67}$	$2.00^{+1.65}_{-1.70}$
$\cos \theta_k^-$	$3\ell + 4\ell$	$1^{+1.68}_{-1.68}$	$2.31^{+1.68}_{-1.68}$

- Measurement consistent with the SM prediction, but **statistically limited**
- Spin-off hypothesis rejected with 1.8σ
- Main systematics from MC modelling, E_T^{miss} and flavour tagging

 $f_{\text{SM}}^{\text{obs.}} = 1.20 \pm 0.63 \text{ (stat.)} \pm 0.25 \text{ (syst.)} = 1.20 \pm 0.68 \text{ (tot.)}.$

SMEFT interpretation

- ttZ sensitive to 20 dim-6 operators (6 top-boson, 14 four-quark)
- <u>Particle</u> level <u>normalised</u> **differential distributions** taken as an input (reweighted with **LO** parametrisation)
- **Separate fits** for top-boson and four-quark operators

• 3 fit strategies:

- Simple linear fit (linear term $A \rightarrow$ interference between SM and SMEFT)
- Full **quadratic fit** (both linear A and quadratic B terms)
- Individual quadratic fit (all other operators set to 0, for comparison with other analyses)

SMEFT results

- No significant deviations from the SM prediction
- Quadratic terms particularly important for four-quark operators
- For some operators (C_{tG}, C_{tW}, ...) linear terms missing due to vanishing interference at LO in QCD
- Linear combinations of operators could provide more stringent limits
 - \rightarrow Fisher information matrix

Fisher information matrix

- SMEFT interpretation in the rotated Warsaw basis
- **3** most prominent directions of sensitivity
- Fisher information matrix:
 - Inverse covariance matrix from the linear fit rotated into the space of Wilson coefficients
 - Provides **measure of sensitivity** achievable along directions given by the **eigenvectors**
 - Inverse square root of eigenvalues λ estimates expected limits for $F_1 F_3$
- Final EFT fit of 3 best linear combinations \rightarrow yields most stringent limits on F₁[-0.08, 0.24]

ATLAS Preliminary

 $\sqrt{s} = 13 \,\text{TeV}, 140 \,\text{fb}^-$

SMEFT $\Lambda = 1$ TeV

F3

Fo

68% C

95% CI

 C/Λ^2 [TeV⁻²]

Linear (maro

Global mode

3

- Legacy ttZ measurement with full Run 2 data
- Improves previous ATLAS results re-using the same data but with novel techniques
- Very precise inclusive xs measurement (6.5% precision) \rightarrow even more than NLO theory (10%)
 - Good compatibility with the theory prediction
- **Differential measurements improved significantly** by using PLU instead of IBU (30% reduction of uncertainties)
 - In agreement with the SM, but still statistically limited
- First spin correlation interpretation for the ttZ process (analysis statistically limited)
 - Result consistent with the SM value, spin-off hypothesis rejected with 1.8σ
- Thorough SMEFT interpretation (20 operators), including Fisher information matrix to identify sensitive directions in the coefficient space

Analysis strategy adapted for future combinations!

Thank you for your attention!

MC Samples

Process	Generator	Parton Shower	PDF	Reference Cross Section (fb)
tīZ	MadGraph5_aMC@NLO 2.8.1	Рутніа 8.244	NNPDF3.0NLO	876.4 [19, 54]
tīH	MADGRAPH5_AMC@NLO 2.6.0	Рүтніа 8.230	NNPDF3.0NLO	507.4 [19]
tīW/tīW j	Sherpa 2.2.10	Sherpa 2.2.10	NNPDF3.0NNLO	722.4 [68]
tZq	MADGRAPH5_AMC@NLO 2.9.5	Рутніа 8.245	NNPDF3.0NLO	38.72
tWZ	MADGRAPH5_AMC@NLO 2.2.2	Рутніа 8.212	NNPDF2.3LO	16.08
tī	Powheg Box 2	Рутніа 8.230	NNPDF3.0NLO	87,710 [69]
WZ+jet/ZZ+jets	SHERPA 2.2.2	SHERPA 2.2.2	NNPDF3.0NNLO	7,334
V+jets	SHERPA 2.2.1	Sherpa 2.2.1	NNPDF3.0NNLO	6,255×10 ³ [67]
tītī	MADGRAPH5_AMC@NLO 2.3.3	Рутніа 8.230	NNPDF3.1NLO	11.97 [70]
ttī	MADGRAPH 2.2.2	Рутніа 8.186	NNPDF2.3LO	1.64
VH	Рутніа 8.186	Рутніа 8.186	NNPDF2.3LO	2,250 [71–77]
VVV	Sherpa 2.2.2	Sherpa 2.2.2	NNPDF3.0NLO	13.74

Region Definitions

Trilepton

Variable		Presele	ction	
$N_{\ell} \ (\ell = e, \mu)$		= 3		
	$\geq 1 \text{ OSSF le}$	epton pair with	$ m_{\ell\ell} - m_Z < 10 \text{ GeV}$	
	for all OS	SF combinatio	ns: $m_{\text{OSSF}} > 10 \text{ GeV}$	
$p_{\mathrm{T}}\left(\ell_{1},\ell_{2},\ell_{3}\right)$	> 27, 20, 15 GeV			
$N_{\text{jets}} (p_{\text{T}} > 25 \text{ GeV})$	≥ 3			
$N_{b-{\rm tagged jets}}$	≥ 1@85%			
	SR-3 <i>l</i> -ttZ	SR-3 <i>l</i> -tZq	SR-3 <i>l</i> -WZ	
DNN-tZq output	< 0.40	≥ 0.40		
DNN-WZ output	< 0.22	< 0.22	≥ 0.22	
N _{b-tagged jets}	()	—	$\geq 1@60\%$	

Dilepton

Variable		Preselectio	on
$N_{\ell} \ (\ell = e, \mu)$	= 2		
	= 1 OSSF lep	oton pair with m	$\ell\ell - m_Z < 10 \text{ GeV}$
$p_{\mathrm{T}}\left(\ell_{1},\ell_{2}\right)$		> 30, 15 Ge	eV
	SR-2ℓ-5j2b	SR-2 <i>l</i> -6j1b	SR-2ℓ-6j2b
$N_{\text{jets}} (p_{\text{T}} > 25 \text{ GeV})$	= 5	≥ 6	≥ 6
Nb-tagged jets@77%	≥ 2	= 1	≥ 2

Tetralepton

Variable	Preselection			
$N_{\ell} \ (\ell = e, \mu)$	= 4			
	\geq 1 OSSF lepton pa	air with $ m_{\ell\ell} - m_Z < 20 \text{ GeV}$		
	for all OSSF com	binations: $m_{OSSF} > 10 \text{ GeV}$		
$p_{\mathrm{T}}\left(\ell_{1},\ell_{2},\ell_{3},\ell_{4}\right)$	> 2	> 27, 7, 7, 7 GeV		
The sum of lepton charges	= 0			
$N_{\text{jets}} (p_{\text{T}} > 25 \text{ GeV})$	≥ 2			
$N_{b-tagged jets}$	$\geq 1@85\%$			
	SR-4 <i>l</i> -SF	SR-4 <i>l</i> -DF		
$\ell\ell^{non-Z}$	e^+e^- or $\mu^+\mu^-$	$e^{\pm}\mu^{\mp}$		
DNN output	≥ 0.4	_		

Particle & parton-level selection

Particle - after ttZ decay, including hadronisation

- simulates detector level selection
- **Parton** before ttZ decay, after QCD radiation
 - tau leptons excluded

Leptons dressed with additional photons at particle level, but not parton

Particle-level selection		
3ℓ channel 4ℓ channel		
Exactly 3 leptons, with $p_{\rm T}(\ell_1, \ell_2, \ell_3) > 27, 20, 15 \text{GeV}$ Exactly four leptons, with $p_{\rm T}(\ell_1, \ell_2, \ell_3, \ell_4) > 27, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7$		
The sum of charges is ± 1	The sum of charges is $= 0$	
At least 3 jets, with $p_{\rm T} > 25 \text{ GeV}$	At least 2 jets, with $p_{\rm T} > 25 \text{ GeV}$	
At least 1 <i>b</i> -jet (jet ghost-matched to a <i>b</i> -hadron)		
At least one OSSF lepton pair, with $ m_{\ell\ell} - m_Z < 10$ GeV		
Parto	on-level selection	
3ℓ channel	4ℓ channel	
$t\bar{t} \rightarrow e^{\pm}/\mu^{\pm} + jets$	$t\bar{t} ightarrow e^{\pm}\mu^{\mp}/e^{\pm}e^{\mp}/\mu^{\pm}\mu^{\mp}$	
Z -	$ ightarrow e^{\pm}e^{\mp}/\mu^{\pm}\mu^{\mp}$	
$m_{\ell\ell}$	$-m_Z < 15 \text{ GeV}$	

Top quark reconstruction

• 21

• Multihypothesis t/W reconstruction

- targets fully hadronic tt system; several hypotheses for the number of missing and present top quarks and W bosons
- 5 different scenarios (1t1W, 2t, 2W, 1t, 1W) tested for each jets-quarks assignment, one with the highest output weight considered correct
- output weights used as discriminating variables for DNNs

• SPANet

- symmetry preserving attention neural network, originally developed for the all-hadronic tt events
- redesigned for the ttZ topology, inputs are jet kinematic and b-tagging info + correct jet assignments
- trained on the 6j1b events, used to construct discriminating variables for separation DNNs

• 3I

- first reconstructed leptonic-side top
- neutrino momentum in z direction from the quadratic equation, most likely top candidate from comparison with m_{by} distribution
- second b used for the reconstruction of hadronic top, two light jets from interpolation of m_{ii}
- 41
- full tt reconstruction using **Two Neutrino Scanning Method**
- whole eta-phi space scanned for the two neutrinos + 2 leptons not associated with the Z + 2 jets with the highest b-tagging score
- kinematic constraints from reference distributions used to create output weight largest taken as correct + weight used as a discriminating variable in DNNs

<mark>21 NN variables</mark>

Variable	Definition
H_T	sum of p_T of all objects (jets and leptons) in the event
$H_{\mathrm{T}}^{\mathrm{jets}}$	sum of p_T of all jets in the event
$p_{\mathrm{T}}^{X,\mathrm{jet}}$	p_T of the Xth jet, where only the first 8 jets are considered
$p_{\rm T}^{X.\rm lep}$	p_T of the Xth lepton
W_{1t1W}	weight for one-top hypothesis and 1W from multihypothesis hadronic t/W reconstruction.
	It is the probability that the event contains all 3 jets from one of the top quark and
	two light jets from the decay of the other top quark. More details are provided in Section 5.5.
W_{1t}	weight for one-top hypothesis from multihypothesis hadronic t/W reconstruction.
	The same as W_{1t1W} , with one top quark only.
Centr _{jets}	scalar sum of p_T divided by sum of E for all jets
$\Delta R(b_1, b_2)$	ΔR between two jets with highest b-tagging working point.
	The jets with the same working point are ordered by p_{T} .
$H_1^{\rm jets}$	first Fox-Wolfram moment built from jets only. The first Fox-Wolfram moment is
	defined as $H_1 = \sum_{i,j} \frac{\vec{p}_i \cdot \vec{p}_j}{E_{vis}^2}$, where \vec{p}_i and \vec{p}_j are 3-momenta of i-th and j-th object
	(jet or lepton) and E_{vis} is all visible energy in the event.
$N_{jj}^{m<50 { m GeV}}$	number of jj combinations with mass lower than 50 GeV
m_Z, y^Z, p_T^Z	mass, rapidity and transverse momentum of Z boson
$minM_{jj}^{ave}$	average (over the number of jets in event) minimum invariant mass of jet pairs. For each jet,
	the other jet which results in the minimum dijet invariant mass is found.
	The observable is the average of these masses over all jets in the event.
$\Delta R(l, l)$	ΔR between two leptons
PCBT_{Xj}	discretised b-tagging efficiency (100-85-77-70-60%) of the Xth jet
$N_{\rm lep}^{\rm top}$	number of leptonic top candidates
$N_{\rm had}^{ m top}$	number of hadronic top candidates
$N_{\rm had}^W$	number of hadronic W candidates
$E_{\mathrm{T}}^{\mathrm{miss}}$	missing transverse energy in the event
H_1	first Fox-Wolfram momentent built from jets and leptons
$p_{\rm T}^{t\bar{t},{\rm spanet}}$	transverse momentum of the $t\bar{t}$ system reconstructed from jets predicted by SPANet

<mark>31 NN variables</mark>

PCBT_{b1}highest discretised b-tagging efficiency (100-85-77-70-60%) of all jets in the event.PCBT_{b2}second highest discretised b-tagging efficiency of all jets in the event.Jet $p_{T,i}$ transverse momentum of the i'th jet in the event where $i \in [1, 4]$
PCBT_{b2}second highest discretised b-tagging efficiency of all jets in the event.Jet $p_{T,i}$ transverse momentum of the i'th jet in the event where $i \in [1, 4]$
Jet $p_{T,i}$ transverse momentum of the <i>i</i> 'th jet in the event where $i \in [1, 4]$
$E_{\rm T}^{\rm miss}$ missing transverse energy of the event
Lepton $p_{T,i}$ transverse momentum of the <i>i</i> 'th lepton in the event where $i \in [1, 3]$
m_t^{lep} reconstructed mass of the leptonically decaying top quark
m_t^{had} reconstructed mass of the hadronically decaying top quark
N _{jets} jet multiplicity in event
Leading <i>b</i> -tagged jet p_{T} transverse momentum of the jet with the highest discretised <i>b</i> -tagging efficiency.
If two have the same bin the leading $p_{\rm T}$ jet of the two is used.
$H_{\rm T}$ sum of the transverse momentum of all jets in the event
$\Delta R(l_i, b_1)$ distance in ΔR between the <i>i</i> 'th lepton and the <i>b</i> -tagged jet tagged with the
highest working point in the event where $i \in [1, 3]$
$p_{\mathrm{T},i}^{Z}$ transverse momentum of the first and second lepton ($i \in [1, 2]$) assigned
to the Z boson based on their invariant mass being closest to the Z mass
η_i^Z pseudo-rapidity of the first and second lepton ($i \in [1, 2]$) assigned to the
Z boson based on their invariant mass being closest to the Z mass
Lepton $p_{\rm T}^{\rm non-Z}$ transverse momentum of the remaining lepton not assigned to the Z boson

<mark>41 NN variables</mark>

Variable	Definition	SF	DF
E_T^{miss}	the missing transverse energy in the event	\checkmark	2 <u></u> 2
$m^{\ell\ell,non-Z}$	the invariant mass of two leptons which were not reconstructed	\checkmark	\checkmark
	as originating from Z		
2vSM weight	the output of the Two neutrino scanning method for event	\checkmark	\checkmark
p_T^Z	the transverse momentum of OSSF lepton pair	\checkmark	\checkmark
	identified as Z pair (invariant mass of lepton pair closest to Z mass)		
$m_t^{\ell b}$	the invariant mass of lepton and <i>b</i> -tagged jet reconstructed as	\checkmark	\checkmark
	originating from top by Two neutrino scanning method		
$m_{ar{t}}^{\ell b}$	the invariant mass of lepton and b-tagged jet reconstructed as	\checkmark	\checkmark
	originating from antitop by Two neutrino scanning method		
$PCBT_{b1}$	highest discretised b-tagging efficiency (100-85-77-70-60%) of all jets	\checkmark	3 <u>—32</u>
	in the event.		
$p_T^{\text{lep}_1}$	the transverse momentum of the leading lepton	\checkmark	\checkmark
$p_T^{\mathrm{jet}_2}$	the transverse momentum of the sub-leading jet	\checkmark	\checkmark
$PCBT_{b2}$	second highest discretised <i>b</i> -tagging efficiency of all jets in the event.		
Njets	jet multiplicity in event		\checkmark
$N_{b-{ m tagged jets}}$	b-tagged jet multiplicity in event	· <u> </u>	\checkmark

Backgrounds

Dilepton tt regions

Variable	Preselection				
$N_{\ell} \ (\ell = e, \mu)$	= 2				
	= 1 OSDF lepton pair with $ m_{\ell\ell} - m_Z < 10 \text{ GeV}$				
$p_{\mathrm{T}}\left(\ell_{1},\ell_{2}\right)$	> 30, 15 GeV				
	2 <i>ℓ-еµ-</i> 5j2b	2 <i>ℓ-eµ-</i> 6j1b	2 <i>ℓ-еµ-</i> 6j2b		
$N_{\text{jets}} (p_{\text{T}} > 25 \text{ GeV})$	= 5	≥ 6	≥ 6		
Nb-tagged jets@77%	≥ 2	= 1	≥ 2		

Tetralepton ZZ CR

Fake CRs in 3l and 4l

Variable	Preselection	Variable		Preselection	
$N_{\ell} \left(\ell - \rho \right)$	- 4	$N_{\ell} \ (\ell = e, \mu)$	= 3 (of	f which = 1 loose non-tight)	1
M_{ℓ} $(\ell - \ell, \mu)$	$> 1 \text{ OSSF}$ lepton pair with $ m_{\ell\ell} - m_{\tau} < 20 \text{ GeV}$	$p_{\mathrm{T}}\left(\ell_{1},\ell_{2},\ell_{3}\right)$		> 27, 20, 15 GeV	
	for all OSSF combinations: $m_{OSSF} > 10$ GeV	Sum of lepton charges		±1	
$p_{\rm T}(\ell_1, \ell_2, \ell_3, \ell_4)$	> 27, 7, 7, 7 GeV	$N_{\text{jets}} (p_{\text{T}} > 25 \text{ GeV})$		≥ 3	
The sum of lepton charges	= 0	$N_{b-tagged jets}$		$\geq 1@85\%$	
$N_{\text{jets}} (p_{\text{T}} > 25 \text{ GeV})$	≥ 2		CR- <i>tī</i> -e	\mathbf{CR} - $t\bar{t}$ - μ	CR-Z-e
Nb-tagged jets	$\geq 1@85\%$	Lepton flavours	no OSSF pair	no OSSF pair	OSSF pair
5	CR-4ℓ-ZZ		(loose lepton is an electron)	(loose lepton is a muon)	(exactly 3 electrons)
$\ell \ell^{\text{non-}Z}$	e^+e^- or $\mu^+\mu^-$	$E_{\mathrm{T}}^{\mathrm{miss}}$	_	_	< 80 GeV
DNN-SF output	< 0.4				

Backgrounds

tt regions in 2l channel

 Fake CRs in 3I and 4I channels

Systematics

Theory

Signal:

- Nominal ttZ: aMC@NLO + Pythia 8
- Parton shower: Pythia 8 vs. Herwig 7
- **Scales:** μ_{R} , μ_{F} varied up and down by a factor of 2
- **ISR:** varying Var3c parameter of Pythia A14 tune
- **PDF:** PDF4LHC prescription
- modelling cross-checked with <u>Sherpa 2.2.1</u>

Background:

- WZ/ZZ + jets: CKKW, QSF, μ_R, μ_F, PDFs, normalisations 10-30%
- **tZq:** parton shower (P8 vs. H7), PDFs, ISR and μ_R, μ_F
- tWZ: DR1 vs. DR2 diagram removal scheme, PDFs, μ_R, μ_F
- Z+jets: CKKW, QSF, PDFs, μ_R, μ_F, 10% normalisation for Z+I

Experimental

- Luminosity (0.83%)
- **Pileup** reweighting
- Lepton selection (1-3%)
- Jet selection: JER, JES, JVT
- Flavor tagging (1.7%)
- E_⊤^{miss}

Experimental uncertainties allow for the future combinations !

2I post-fit yields and norm. factors

3	SR-2ℓ-5j2b	SR-2ℓ-6j2b	SR-2ℓ-6j1b
tīZ	297 ± 20	443 ± 27	305 ± 28
tī DD	4001 \pm 72	1913 ± 45	1161 ± 35
Z + b	5710 ± 170	2680 ±110	4830 ± 280
Z + c	349 ± 95	189 ± 47	2020 ± 480
Z + l	59 ± 25	19.6 ± 8.1	1020 ± 240
tWZ	23.2 ± 0.92	34.4 ± 2.1	40.2 ± 1.9
Diboson	150 ± 80	95 ± 52	340 ± 180
Fake leptons	28 ± 14	18.6 ± 9.2	25 ± 12
Other	55 ± 25	49 ± 22	23 ± 10
Total	10700 ± 100	5440 \pm 68	9760 ±110
Data	10702	5 4 3 5	9737

Norm. factor	Value	
N_{ZZ+b}	$1.1 \begin{array}{c} +0.4 \\ -0.4 \end{array}$	
\mathcal{N}_{WZ+b}	$0.9 \ ^{+0.4}_{-0.4}$	
\mathcal{N}_{Z+b}	$1.08^{+0.11}_{-0.10}$	
N_{Z+c}	$0.61^{+0.23}_{-0.20}$	
$\mathcal{N}_{e,\mathrm{HF}}$	$0.89^{+0.09}_{-0.09}$	
$\mathcal{N}_{e,\mathrm{other}}$	$1.2 \ ^{+0.4}_{-0.4}$	
$\mathcal{N}_{\mu,\mathrm{HF}}$	$1.02^{+0.08}_{-0.08}$	

<mark>31 & 41 post-fit yields</mark>

	SR-3 <i>l</i> -ttZ	SR-3 <i>ℓ</i> -WZ	SR-3 <i>l</i> -tZq	SR-4ℓ-SF	SR-4ℓ-DF	CR-4 <i>l</i> -ZZ
tīZ	441 ± 21	$49.0~\pm~3.7$	151 ± 11	49.4 ± 3.0	51.1 ± 2.9	2.36 ± 0.23
$t\bar{t}W$	4.3 ± 2.2	2.2 ± 1.1	5.3 ± 2.6		· ·	
tīH	11.9 ± 1.1	1.43 ± 0.13	6.70 ± 0.57	2.79 ± 0.24	2.82 ± 0.24	0.32 ± 0.04
WZ + b	21.1 ± 7.4	47 ±16	27.1 ± 9.5		<u></u> 2	
WZ + c	8.9 ± 3.6	12.2 ± 5.0	11.1 ± 4.6		—	
WZ + l	1.19 ± 0.52	1.70 ± 0.76	1.81 ± 0.80			
ZZ + b	4.3 ± 2.5	6.9 ± 4.0	7.3 ± 4.2	7.5 ± 2.0	0.46 ± 0.12	26.7 ± 6.9
ZZ + c	1.23 ± 0.42	1.22 ± 0.43	1.61 ± 0.53	2.13 ± 0.66	0.30 ± 0.09	24.6 ± 7.1
ZZ + l	0.42 ± 0.13	0.26 ± 0.09	0.53 ± 0.15	0.83 ± 0.24	0.34 ± 0.09	22.6 ± 5.2
tZq	20.8 ± 4.0	13.2 ± 2.3	99 ± 16			<u> </u>
tWZ	$40.0~\pm~7.6$	18.0 ± 4.2	24.2 ± 3.0	6.60 ± 0.82	7.3 ± 1.2	0.69 ± 0.10
tītī	1.56 ± 0.78	0.13 ± 0.07	0.27 ± 0.14			
Other	1.33 ± 0.61	1.40 ± 0.63	0.39 ± 0.19	0.55 ± 0.25	1.12 ± 0.52	0.55 ± 0.25
F-e-HF	4.6 ± 1.0	3.90 ± 0.87	12.0 ± 2.6	0.28 ± 0.07	0.45 ± 0.10	0.11 ± 0.03
F-e-Other	7.8 ± 2.7	7.3 ± 2.6	15.2 ± 5.4	0.39 ± 0.14	0.50 ± 0.18	0.10 ± 0.04
F-m-HF	6.98 ± 0.86	5.27 ± 0.66	18.2 ± 2.2	0.58 ± 0.07	0.62 ± 0.08	0.16 ± 0.02
F-Other	2.8 ± 1.2	2.7 ± 1.2	4.4 ± 2.0	0.90 ± 0.40	1.66 ± 0.74	0.33 ± 0.15
Total	580 ± 19	174 ± 13	386 ± 15	72.0 ± 3.4	66.7 ± 3.0	78.5 ± 8.0
Data	569	175	388	79	74	81

Profile likelihood unfolding procedure

The profile likelihood unfolding procedure uses the following formula for the likelihood

$$L\left(\vec{n}|\mu,\vec{\theta},\vec{k}\right) = \prod_{r \in \text{regions}} \prod_{i \in \text{bins}} \text{Pois}\left(n_{i,r}|\vec{\mu}\vec{S}_{i,r}(\vec{\theta}) + B_{i,r}(\vec{\theta},\vec{k})\right) \times \prod_{j \in \text{NPs}} \text{Gaus}\left(\theta_j\right) \times R(\vec{\mu}), \tag{2}$$

where $n_{i,r}$ is the number of events observed in *i*-th bin of *r*-th region, $\vec{S}_{i,r}$ is the response matrix, $B_{i,r}(\vec{\theta}, \vec{k})$ is the background contribution, \vec{k} is vector of free-floating background normalisations and $\vec{\theta}$ is vector of nuisance parameters related to the systematic uncertainties. In case of the normalised distribution, the $\vec{\mu}$ is reparametrised in the way, that the last element of the vector is the overall signal normalisation. In this case, the content of the last bin of the unfolded distribution is dropped from the $\vec{\mu}$, since it is no longer a free parameter and it can be calculated based on the values in other bins and the overall normalisation.

$$\rho = \left(\sqrt{1 - (C_{ii}C_{ii}^{-1})^{-1}}\right),\tag{4}$$

where C_{ii} is the correlation matrix, C_{ii}^{-1} is inverted correlation matrix and the brackets represent the mean value over the diagonal elements. The τ value where the global correlation reaches its minimum was chosen as the optimal value.

Differential observables

Observable	Channels	Bins	Bin Ranges
$p_{\rm T}^Z$ [GeV]	$3\ell + 4\ell$	8	[0, 60, 100, 140, 180, 230, 280, 350, 1000]
$ y^{Z} $	$3\ell + 4\ell$	9	[0, 0.125, 0.275, 0.425, 0.6, 0.775, 0.95, 1.175, 1.45, 2.5]
$p_{\mathrm{T}}^{\ell,\mathrm{non-}Z}$	3ℓ	5	[0, 35, 55, 80, 120, 500]
$ \Delta y(Z, t_{\text{lep}}) $	3ℓ	5	[0, 0.25, 0.6, 1.05, 1.55, 5]
$ \Delta \phi(Z, t_{\text{lep}}) $	3ℓ	6	[0, 0.16, 0.44, 0.66, 0.82, 0.93, 1]
$ \Delta \phi(\ell_t^+,\ell_{\bar{t}}^-) $	4ℓ	7	[0, 0.2, 0.37, 0.53, 0.67, 0.79, 0.89, 1]
H^ℓ_{T}	3ℓ	8	[50, 130, 165, 195, 230, 275, 330, 405, 800]
H^ℓ_{T}	4ℓ	5	[50, 195, 250, 315, 400, 800]
N _{jets}	3ℓ	4	[2.5, 3.5, 4.5, 5.5, 10.5]
N _{jets}	4ℓ	3	[1.5,2.5,3.5,8.5]
p_{T}^{t} [GeV]	$3\ell + 4\ell$	10	[0, 48, 80, 112, 144, 176, 216, 256, 296, 352, 800]
$p_{\rm T}^{t\bar{t}}$ [GeV]	$3\ell + 4\ell$	10	[0, 50, 80, 110, 140, 170, 210, 250, 290, 330, 1000]
$ \Delta \phi(t\bar{t},Z) /\pi$	$3\ell + 4\ell$	5	[0, 0.73, 0.86, 0.94, 0.98, 1]
$m_{t\bar{t}}$ [GeV]	$3\ell + 4\ell$	10	[0, 370, 420, 470, 530, 600, 680, 780, 890, 1010, 2000]
$m_{t\bar{t}Z}$ [GeV]	$3\ell + 4\ell$	10	[400, 580, 650, 720, 800, 890, 990, 1100, 1220, 1350, 2000]
$ y^{t\bar{t}Z} $	$3\ell + 4\ell$	10	[0, 0.075, 0.2, 0.35, 0.5, 0.65, 0.8, 0.95, 1.1, 1.25, 2.5]
$\cos \theta_Z^*$	$3\ell + 4\ell$	8	[-1, -0.75, -0.5, -0.25, 0, 0.25, 0.5, 0.75, 1]

Spin correlations

- **k**, **n**, **r** axes in orthonormal basis, +/- is charge of lepton/quark
- In 4I observables defined using leptons from tt
- In 3I necessary to use lepton + down-type quark from W decay (c or s) c tagged jets if pass at least 85% but fail 60% (its companion is s-quark)
- Negative (or >1) f_{sM} caused by large variability of the fit results under local excesses not compatible with either the spin-on or spin-off templates
- Fit enhances the impact of systematic uncertainties with an important shape component (alternative parton showers for ttZ, electron isolation and ZZ+b scale uncertainties in 4I)
- Future spin density measurements will be able to probe possible CP-violation effects and 4-fermion operators

A final observable of interest can be constructed in both the 3ℓ and 4ℓ channels: the opening angle between the two charged leptons (charged lepton and *s*-jet) from the dileptonic (semi-leptonic) $t\bar{t}$ system, where each decay product is first boosted to the rest frame of its respective parent (anti-)top quark. This angle φ is particularly sensitive to spin correlations, and the following three relations hold [26]:

$$\frac{1}{\sigma}\frac{\mathrm{d}\sigma}{\mathrm{d}\cos\varphi} = \frac{1}{2}\left(1 - D\cos\varphi\right), \quad D = -\frac{c_{rr} + c_{kk} + c_{nn}}{3}, \quad D = -3\langle\cos\varphi\rangle. \tag{6}$$

33

SMEFT interpretation

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{d>4} \mathcal{L}^{(d)}, \quad \mathcal{L}^{(d)} = \sum_{i=1}^{n_d} \frac{C_i^{(d)}}{\Lambda^{d-4}} Q_i^{(d)},$$

$$c_{tZ} = -\sin \theta_W C_{tB} + \cos \theta_W C_{tW},$$

$$c_{\varphi Q}^- = C_{HQ}^{(1)} - C_{HQ}^{(3)},$$

Wilson coefficient		68% CI (exp.)	95% CI (exp.)	68% CI (obs.)	95% CI (obs.)	Best-fit
\mathcal{F}_1	$O(\Lambda^{-2})$ (marg.)	[-0.15, 0.16]	[-0.30, 0.31]	[-0.080, 0.24]	[-0.23, 0.39]	0.08
\mathcal{F}_2	$O(\Lambda^{-2})$ (marg.)	[-0.36, 0.36]	[-0.72, 0.70]	[0.18, 0.90]	[-0.18, 1.3]	0.5
\mathcal{F}_3	$O(\Lambda^{-2})$ (marg.)	[-1.4, 1.3]	[-2.7, 2.7]	[0.35, 3.1]	[-0.95, 4.5]	2

	Operator	Definition	
uoso	Q_{tW}	$(\bar{Q}\sigma^{\mu\nu}t)\sigma^i\tilde{H}W^i_{\mu\nu}$	(*)
	Q_{tB}	$(\bar{Q}\sigma^{\mu\nu}t)\tilde{H}B_{\mu\nu}$	(*)
	Q_{tG}	$(\bar{Q}\sigma^{\mu\nu}T^at)\tilde{H}G^a_{\mu\nu}$	(★)
q-do	$Q_{HQ}^{(1)}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{Q}\gamma^{\mu}Q)$	
t	$Q_{HQ}^{(3)}$	$(H^{\dagger}i\overleftrightarrow{D}{}^{i}_{\mu}H)(\bar{Q}\sigma^{i}\gamma^{\mu}Q)$	
22	Q_{Ht}	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{t}\gamma^{\mu}t)$	
	$Q_{tu}^{(1)}$	$(\bar{t}\gamma_{\mu}t)(\bar{u}\gamma^{\mu}u)$	
	$Q_{tu}^{(8)}$	$(\bar{t}T^a\gamma_\mu t)(\bar{u}T^a\gamma^\mu u)$	
	$Q_{td}^{(1)}$	$(\bar{t}\gamma_{\mu}t)(\bar{d}\gamma^{\mu}d)$	
	$Q_{td}^{(8)}$	$(\bar{t}T^a\gamma_\mu t)(\bar{d}T^a\gamma^\mu d)$	
	$Q_{qt}^{(1)}$	$(\bar{q}\gamma_{\mu}q)(\bar{t}\gamma^{\mu}t)$	
	$Q_{qt}^{(8)}$	$(\bar{q}T^a\gamma_\mu q)(\bar{t}T^a\gamma^\mu t)$	
	$Q_{Qu}^{(1)}$	$(\bar{Q}\gamma_{\mu}Q)(\bar{u}\gamma^{\mu}u)$	
А	$Q_{Qu}^{(8)}$	$(\bar{Q}T^a\gamma_\mu Q)(\bar{u}T^a\gamma^\mu u)$	
quar	$Q_{Qd}^{(1)}$	$(\bar{Q}\gamma_{\mu}Q)(\bar{d}\gamma^{\mu}d)$	
our-	$Q_{Qd}^{(8)}$	$(\bar{Q}T^a\gamma_\mu Q)(\bar{d}T^a\gamma^\mu d)$	
f	$Q_{Qq}^{(1,1)}$	$(\bar{Q}\gamma_{\mu}Q)(\bar{q}\gamma^{\mu}q)$	
	$Q_{Qq}^{(3,1)}$	$(\bar{Q}\sigma^i\gamma_\mu Q)(\bar{q}\sigma^i\gamma^\mu q)$	
	$Q_{Qq}^{(1,8)}$	$(\bar{Q}T^a\gamma_\mu Q)(\bar{q}T^a\gamma^\mu q)$	
	$Q_{Qq}^{(3,8)}$	$(\bar{Q}\sigma^iT^a\gamma_\mu Q)(\bar{q}\sigma^iT^a\gamma^\mu q)$	