

Katharina Voß on behalf of the ATLAS collaboration

Studies on the improvement of the matching uncertainty definition in top-quark processes simulated with Powheg+Pythia 8 in ATLAS

Open LHC Top WG Meeting

30th November 2023

New ATLAS matching uncertainty prescription for Powheg+Pythia 8 (Pwg+Py8) top processes based on Pythia 8 p_{T}^{hard} parameter

[ATL-PHYS-PUB-2023-029]

 \rightarrow made public on the 21.09.2023

 \rightarrow summarises studies of matching uncertainty in $t\bar{t},$ t-channel single top and tW processes In these slides:

- comparison of previous and new prescription in $t\bar{t}$ process
- comparison with $p_{\rm T}^{\rm def}$ and $h_{\rm damp}$ variation
- introduction of NNLO reweighting and top line shape uncertainty

Uncertainty prescription in Pwg+Py8 tt process in ATLAS

- Status and ongoing studies: nominal samples
 - top pair production
 - single-top associated production: tW
- Examples of analyses strongly influenced by modelling systematics
 - *m*_{top} measurement (recoil-to-top)
 - entanglement measurement (parton shower uncertainty)

🖇 🖬 Matching uncertainty [ATL-PHYS-PUB-2023-029]

Previous matching uncertainty definition for top processes in ATLAS:

compare nominal Pwg+Py8 to MG_aMC@NLO+Py8 sample

- \rightarrow convolutes multiple modelling differences, not only matching uncertainty!
- \rightarrow matching uncertainty now updated to use variation of Py8 parameter $p_{\rm T}^{\rm hard}$ [SciPost Phys. 12 (2022) 010]

What is $p_{\rm T}^{\rm hard}$?

Showering of Pwg LHE files with Py8:

vetoed shower = generate emissions with Py8 in full, unrestricted phase space, but then veto emissions which have hardness scale > Pwg scale

How is the Pwg scale determined?

- Born-like events: SCALUP value of LHE information
- real emission events:
 - $p_T^{hard} = 0$ (default): SCALUP value of LHE information
 - $p_T^{hard} = 1$: min(p_T of Pwg emission w.r.t. all other final-state particles, p_T of Pwg emission w.r.t. the beam axis)
 - $p_T^{hard} = 2$: min(p_T of all final-state particles w.r.t. each-other, p_T of all final state particles w.r.t. the beam axis)

ATLAS uncertainty prescription in $t\bar{t}$ process

\Re **U** Matching uncertainty in $t\bar{t}$ distributions

Distributions sensitive to matching uncertainty = observables which are sensitive to the available radiation phase space $\rightarrow p_{T}^{T}$, p_{J}^{i} not from top decay, N_{iets}

 \rightarrow difference through $p_{\rm T}^{\rm hard}$ variation, as well as clear difference between MG_aMC@NLO+Py8 and Pwg+Py8 sample

Katharina Voß (Universität Siegen)

ATLAS uncertainty prescription in $t\bar{t}$ process

4/19

\Re **u** Matching uncertainty in $t\bar{t}$ distributions

Distributions sensitive to matching uncertainty = observables which are sensitive to the available radiation phase space $\rightarrow p_{T}^{\tau\bar{I}}$, p_{J}^{j} not from top decay, N_{iets}

 $1/\sigma \cdot d\sigma/dN^{extrajets}$ Events 107 ATLAS Preliminary $\sqrt{s} = 13$ TeV, 36.1 fb⁻¹ ATLAS Simulation Preliminary (s = 13 TeV, 140 fb¹ Data [EPIC 80 (2020) 11, 1092] -+-- 1ℓ Pwg+Py8 Pwg+Pv8 · pThard=1 pThard=1 + pThard=2 pThard=2 10⁶ MG5_aMC@NLO+Pv8 + MG5_aMC@NLO+Pv8 10 10⁵ 10^{-2} 10-3 10⁴ 1.4 MC/Pwg+Py8 1.2 MC/Data 0.8 0.6 0.4 ŧ 0 2 3 5 ≥ 6 N^{extrajets} N jets

→ again clear difference through p_T^{hard} variation, both on particle and reconstructed level Katharina Vo8 (Universität Siegen) ATLAS matching uncertainty definition 30th November 2023

\Re **u** Matching uncertainty in $t\bar{t}$ distributions

Distributions not sensitive to matching uncertainty = observables which are not strongly sensitive available radiation phase space

 $ightarrow m_{tar{t}}$, $p_{
m T}$ of the top-quark, $p_{
m T}$ of top-quark decay products

→ not sensitive to p_T^{hard} variation, but difference between MG_MC@NLO+Py8 and Pwg+Py8! → p_T^{hard} variation offers targeted matching uncertainty definition → $p_T^{hard} = 1$ variation in uncertainty definition due to better agreement with unfolded data Katharina Vo8 (Universität Siegen) ATLAS matching uncertainty definition 30th November 2023 5

ATLAS uncertainty prescription in $t\overline{t}$ process

% **U** Comparison with h_{damp} variation

Question: How does the h_{damp} variation compare with the p_T^{hard} variation, since h_{damp} influences the generation of the hardest emission? Comparison of

• nominal $t\bar{t}$ Pwg+Py8 ($h_{damp} = 1.5 m_{top}, p_{T}^{hard} = 0$)

- p_{T}^{hard} varied $t\bar{t}$ Pwg+Py8 ($h_{damp} = 1.5 m_{top}, p_{T}^{hard} = 1$)
- h_{damp} varied $t\bar{t}$ Pwg+Py8 ($h_{\text{damp}} = 3 m_{\text{top}}, p_{\text{T}}^{\text{hard}} = 0$)

 \rightarrow no strong connection between the $h_{\rm damp}$ and $\rho_{\rm T}^{\rm hard}$ variations found, some distributions only influenced by one of the two, some influenced in different ways

Katharina Voß (Universität Siegen)

ATLAS uncertainty prescription in $t\bar{t}$ process

\Re **u** Comparison with p_{T}^{def} variation

What is $p_{\rm T}^{\rm def}$?

Which p_T definition is used when calculating the hardness in the matching?

- $p_{T}^{def} = 0$: Pwg ISR p_{T} definition for ISR and FSR
- $p_{T}^{def} = 1$ (Pythia 8 default): Pwg ISR p_{T} and FSR d_{ij} definition
- $p_{T}^{def} = 2$ (ATLAS default): Pythia 8 p_{T} definition

 \rightarrow ATLAS default $p_{\rm T}^{\rm def}=$ 2 chosen due to better data-MC agreement

 $\rightarrow p_{T}^{\text{def}}$ variation has large effect on presented variables, mostly worsening data-MC agreement Katharina Voß (Universität Siegen) ATLAS matching uncertainty definition 30th November 2023 7/

ATLAS uncertainty prescription in $t\bar{t}$ process

🎗 🖬 New uncertainty definition: top line shape

Previous Pwg+Py8 and MG_aMC@NLO+Py8 comparison also covered difference in the top quark decay modelling and in the approximation of off-shell effects

 \rightarrow introduce new Pwg+MadSpin+Py8 sample, which follows closely the top quark line shape from MG_aMC@NLO+Py8 sample at parton level

Caveat: mis-match between treatment of MadSpin and Pythia 8 of *b*-quarks leads to non-conservation of invariant mass after the top decay $m(t) \neq m(Wb)$ and increase of the top line shape uncertainty at particle level

Solution: special MadGraph model with massive and massless *b*-quarks and relabelling of particle IDs in LHE files

ATLAS matching uncertainty in top quark processes $\texttt{OOOOOOO}{\bullet}\texttt{OO}$

ATLAS uncertainty prescription in $t\bar{t}$ process

🆇 🖬 New uncertainty definition: top line shape

→ difference in parton level in low $m_{t\bar{t}}$ region between Pwg+Py8 and Pwg+MadSpin+Py8 also seen in low $m_{t\bar{t}}$ reconstructed distribution → no large deviation of the Pwg+Py8 and MG_aMC@NLO+Py8 parton level high $m_{t\bar{t}}$ distribution, but difference seen in reconstructed $m_{t\bar{t}}$ = not just top line shape effect

Katharina Voß (Universität Siegen)

ATLAS matching uncertainty in top quark processes OOOOOOOOO

ATLAS uncertainty prescription in $t\bar{t}$ process

🕅 🖬 New uncertainty definition: top line shape

 \rightarrow clear difference between Pwg+Py8 and MG_aMC@NLO+Py8 in leading *b*-jet p_{T} (influences selection efficiency) and $N_{\rm jets}$ \rightarrow observables, which should not depend on line shape, do not show large difference between Pwg+Py8 and Pwg+MadSpin+Py8

Katharina Voß (Universität Siegen) ATLAS matching uncertainty definition

ATLAS matching uncertainty in top quark processes $\texttt{ooooooooo} \bullet$

🌹 💶 New uncertainty definition: NNLO reweighting

Comparison of $\mathsf{Pwg}+\mathsf{Py8}$ and MG_aMC@NLO+Py8 also covered accidentally the mismodelling of the top p_T :

 $t\bar{t}$ MG_aMC@NLO+Py8 was found to model the top p_T shape better than Pwg+Py8

 \rightarrow now added a dedicated uncertainty:

reweighting recursively the truth $p_{T}^{t\bar{t}}$, $m_{t\bar{t}}$, p_{T}^{t} and $p_{T}^{\bar{t}}$ to NNLO

Katharina Voß (Universität Siegen)

ATLAS uncertainty prescription in $t\bar{t}$ process

Nominal ATLAS $t\bar{t}$ samples is modelled with Pwg+Py8 (hvq)

 \rightarrow studies on alternative nominal samples on-going (recipe for systematic uncertainties is needed for a new nominal sample)

Studies on $t\bar{t}/tW$ interference presented in [ATL-PHYS-PUB-2021-042] \rightarrow some improvement in data-MC agreement found using dynamical scale in aMC@NLO+Py8 and reduced difference between different subtraction schemes $\rightarrow tW$ with dynamical scales new ATLAS default for Pwg+Py8

\Re **u** Uncertainty prescription for the $t\bar{t}$ process

Hard process generation

- scale uncertainty varying $(K_R, K_F) \in \{(1, 0.5), (1, 2), (0.5, 1), (2, 1)\}$ with $\mu_{R/F} = K_{R/F}\mu_0$
- PDF uncertainty PDF4LHC variations added in quadrature (nominal NNPDF3.0)
- new prescription: NNLO reweighting use NNLO reweighting based on truth p_T^{t¯}, m_{t¯}, p_T^t and p_T[¯]
- h_{damp} variation compare nominal $h_{\text{damp}} = 1.5 m_{\text{top}}$ to $h_{\text{damp}} = 3 m_{\text{top}}$
- top quark mass compare nominal $m_{top} = 172.5$ GeV to $m_{top} \in \{172.0, 173.0\}$ GeV samples

Matching uncertainty

 new prescription: Pythia 8 p_T^{hard} variation compare nominal p_T^{hard} = 0 to p_T^{hard} = 1 sample

Katharina Voß (Universität Siegen)

² **U** Uncertainty prescription for the $t\overline{t}$ process

Parton shower uncertainties

- initial state radiation Pythia 8 Var3c variations, vary ISR $\alpha_S(M_Z) = \{0.115, 0.140\}$, nominal $\alpha_S(M_Z) = 0.127$ [ATL-PHYS-PUB-2014-021]
- final state radiation vary FSR α_S by factor 0.5 and 2
- parton shower

comparison of nominal Pwg+Py8 with Pwg+Herwig 7 (H7)

Specialised uncertainty definitions

- **new prescription: top line shape** (only for analysis in off-shell region) comparison of nominal Pwg+Py8 to Pwg+MadSpin+Py8 tt sample
- recoil-to-top

compare nominal (recoil-to-colour) to alternative recoil-to-top sample

- underlying event Py8 A14 Var1 variations (MPI and UE tuning parameters) [ATL-PHYS-PUB-2014-021]
- colour reconnection comparison of nominal to tuned results with different CR models CR1 and CR2 [ATL-PHYS-PUB-2017-008]

\Re **u** $t\bar{t}$ modelling uncertainties: m_{top} measurement

 $m_{
m top}$ in $t\bar{t}
ightarrow$ dilepton with template method at $\sqrt{s} = 13$ TeV [ATLAS-CONF-2022-058]

- Recoil-to-top: large impact
- Matrix-element matching: comparison of Pwg+Py8 and aMC@NLO+Py8 → now new prescription to avoid double-counting of modelling systematics

	mtop [GeV]
Result	172.21
Statistics	0.20
Method	0.05 ± 0.04
Matrix-element matching	0.40 ± 0.06
Parton shower and hadronisation	0.05 ± 0.05
Initial- and final-state QCD radiation	0.17 ± 0.02
Underlying event	0.02 ± 0.10
Colour reconnection	0.27 ± 0.07
Parton distribution function	0.03 ± 0.00
Single top modelling	0.01 ± 0.01
Background normalisation	0.03 ± 0.02
Jet energy scale	0.37 ± 0.02
b-jet energy scale	0.12 ± 0.02
Jet energy resolution	0.13 ± 0.02
Jet vertex tagging	0.01 ± 0.01
b-tagging	0.04 ± 0.01
Leptons	0.11 ± 0.02
Pile-up	0.06 ± 0.01
Recoil effect	0.39 ± 0.09
Total systematic uncertainty (without recoil)	0.67 ± 0.05
Total systematic uncertainty (with recoil)	0.77 ± 0.06
Total uncertainty (without recoil)	0.70 ± 0.05
Total uncertainty (with recoil)	0.80 ± 0.06

ATLAS uncertainty prescription in $t\bar{t}$ process

ATLAS default $t\bar{t}$ Pwg+Py8 setting: recoilToColoured = on \rightarrow out of cone radiation is supressed **Recoil-to-top**: *W*-boson as a recoiler (more out of cone radiation), but multiply with correction factor \rightarrow in principle the better description!

Uncertainty prescription: comparison of nominal $t\bar{t}$ Pwg+Py8 sample to $t\bar{t}$ Pwg+Py8 produced with the [TopRecoil UserHook] \rightarrow number of analyses including this systematic uncertainty is increasing

Katharina Voß (Universität Siegen)

\Re **u** $t\bar{t}$ modelling uncertainties: entanglement

Entanglement in top pair production (dilepton) at $\sqrt{s} = 13$ TeV [arXiv:2311.07288]

Measured observable: average angle $\cos \phi$ between the two charged leptons in top and anti-top restframe

 \rightarrow PS uncertainty defined by comparison of Pwg+Py8 (nominal) and Pwg+H7 can lead to large uncertainty covering different uncertainty sources, completely factorised uncertainty definition would be desirable

Katharina Voß (Universität Siegen)

Nominal samples

- top quark pair production: working on improved description with MiNNLO and bb4ℓ
 → [bb4ℓ CMS talk in this session by Laurids Jeppe]
 - \rightarrow waiting for public release of bb41-s1 code
- tW DR/DS: recommendation to use dynamical scales
- in general: moving toward more recent generator versions and considering recent matrix element correction recommendations for MG_aMC@NLO+Py8 samples [arXiv:2308.06389]
 → [Talk in this session by Stefano Frixione]

Modelling uncertainties

• new prescription for matching uncertainty of varying Pythia 8 p_T^{hard} parameter for $t\bar{t}$ and single top processes

 \rightarrow targeted matching uncertainty, avoiding double-counting of systematic effects present in the previous comparison of Pwg+Py8 and MG_aMC@NLO+Py8 samples

- number of analyses using the recoil-to-top uncertainty prescription is increasing
- factorised parton shower uncertainty desirable to better identify and understand uncertainty sources

Nominal samples

- top quark pair production: working on improved description with MiNNLO and $bb4\ell$ $\rightarrow [bb4\ell$ CMS talk in this session by Laurids Jeppe]
 - \rightarrow waiting for public release of bb41-s1 code
- tW DR/DS: recommendation to use dynamical scales
- in general: moving toward more recent generator versions and considering recent matrix element correction recommendations for MG_aMC@NLO+Py8 samples [arXiv:2308.06389]
 → [Talk in this session by Stefano Frixione]

Modelling uncertainties

• new prescription for matching uncertainty of varying Pythia 8 p_T^{hard} parameter for $t\bar{t}$ and single top processes

 \rightarrow targeted matching uncertainty, avoiding double-counting of systematic effects present in the previous comparison of Pwg+Py8 and MG_aMC@NLO+Py8 samples

- number of analyses using the recoil-to-top uncertainty prescription is increasing
- factorised parton shower uncertainty desirable to better identify and understand uncertainty sources

Thank you for your attention!

Katharina Voß (Universität Siegen)

Back Up

 $\to p_{\rm T}^{\rm hard}$ variation also tested in single top t-channel production and tW associated production

 \rightarrow shape variation through $p_{\rm T}^{\rm hard}$ variation in $p_{\rm T}(j_2)$ distribution, which is sensitive to matching \rightarrow smaller variation through $p_{\rm T}^{\rm hard}$ variation in less matching-sensitive observable $m_{\ell b}$ than with MG_aMC@NLO+Py8

Katharina Voß (Universität Siegen)

${f y}$ ${f U}$ tar t modelling uncertainties: $\sigma_{tar t}$ measurement

 \rightarrow inclusive $\sigma_{t\bar{t}}$ measurement could profit strongly from $t\bar{t}$ NNLO+PS sample

Inclusive and differential $t\bar{t} \rightarrow$ dilepton cross section at $\sqrt{s} = 13$ TeV [JHEP 07 (2023) 141]

NNLO p_{T}^{t} rwgt. largest syst. uncertainty for
inclusive measurement due to influence on
preselection efficiency (top $p_T \rightarrow$ lepton p_T)

Source of uncertainty	$\Delta \sigma_{t\bar{t}}^{\rm fid} / \sigma_{t\bar{t}}^{\rm fid}$ [%]	$\Delta\sigma_{t\bar{t}}/\sigma_{t\bar{t}}~[\%]$
Data statistics	0.15	0.15
MC statistics	0.04	0.04
Matrix element	0.12	0.16
h _{damp} variation	0.01	0.01
Parton shower	0.08	0.22
$t\bar{t}$ + heavy flavour	0.34	0.34
Top p_T reweighting	0.19	0.58
Parton distribution functions	0.04	0.43
Initial-state radiation	0.11	0.37
Final-state radiation	0.29	0.35
Electron energy scale	0.10	0.10
Electron efficiency	0.37	0.37
Electron isolation (in situ)	0.51	0.51
Muon momentum scale	0.13	0.13
Muon reconstruction efficiency	0.35	0.35
Muon isolation (in situ)	0.33	0.33
Lepton trigger efficiency	0.05	0.05
Vertex association efficiency	0.03	0.03
Jet energy scale & resolution	0.10	0.10
b-tagging efficiency	0.07	0.07
$t\bar{t}/Wt$ interference	0.37	0.37
Wt cross-section	0.52	0.52
Diboson background	0.34	0.34
$t\bar{t}V$ and $t\bar{t}H$	0.03	0.03
Z + jets background	0.05	0.05
Misidentified leptons	0.32	0.32
Beam energy	0.23	0.23
Luminosity	0.93	0.93
Total uncertainty	1.6	1.8

$${\it G}_{e\mu}$$
 ($e\mu$ reco. eff.),

$$E_{e\mu} = A_{e\mu} \cdot G_{e\mu}, A_{e\mu} = N_{e\mu}^{tt, \text{fiducial}} / N^{t\overline{t}}$$

Systematic uncertainty name	$\Delta C_b/C_b~[\%]$	$\Delta G_{e\mu}/G_{e\mu}~[\%]$	$\Delta E_{e\mu}/E_{e\mu}~[\%]$
Matrix element	-0.10 ± 0.22	0.25 ± 0.11	0.29 ± 0.12
h _{damp}	-0.06 ± 0.08	-0.05 ± 0.04	-0.05 ± 0.05
Parton shower and hadronisation	0.16 ± 0.08	-0.26 ± 0.04	0.04 ± 0.05
Top $p_{\rm T}$ reweighting	0.03 ± 0.08	0.22 ± 0.04	0.61 ± 0.05
$t\bar{t}$ + heavy flavour	-0.33 ± 0.08	0.01 ± 0.04	0.01 ± 0.05
ISR (high) ISR (low)	$\begin{array}{c} -0.01 \pm 0.08 \\ 0.04 \pm 0.08 \end{array}$	$\begin{array}{c} 0.06 \pm 0.04 \\ -0.13 \pm 0.04 \end{array}$	$\begin{array}{c} 0.35 \pm 0.05 \\ -0.35 \pm 0.05 \end{array}$
FSR (high) FSR (low)	$\begin{array}{c} 0.05 \pm 0.09 \\ -0.09 \pm 0.15 \end{array}$	$\begin{array}{c} -0.07 \pm 0.04 \\ 0.10 \pm 0.07 \end{array}$	$\begin{array}{c} -0.12 \pm 0.05 \\ 0.16 \pm 0.09 \end{array}$
PDF	0.02 ± 0.08	0.04 ± 0.04	0.42 ± 0.05

Katharina Voß (Universität Siegen)

\Re **u** Studies on nominal $t\bar{t}$ sample: MiNNLO

 \rightarrow studying different matching options for $t\bar{t}$ MiNNLO [ATL-PHYS-PUB-2023-029]

• (s1)
$$p_{T}^{def} = 1$$
 (Py8 default), $p_{T}^{hard} = 0$ (Py8 default)

• (s2) $p_{T}^{def} = 2$ (ATLAS $t\bar{t}$ default), $p_{T}^{hard} = 0$ (Py8 default)

• (s3)
$$p_{\rm T}^{\rm def} = 1$$
 (Py8 default), $p_{\rm T}^{\rm hard} = 1$

Katharina Voß (Universität Siegen)