ATLAS highlight 2: $t\bar{t}(+jets)$ in ATLAS and a comparison with the CMS triple differential cross-section measurement, and $t\bar{t}$ in *p*Pb collisions

Miguel Príncipe¹ and Henriette Aarup Petersen² on behalf of ATLAS and CMS Collaborations ¹Universidad Autónoma de Madrid ²DESY

> 30th November 2023 LHC TOP WG meeting

Overview

Analyses presented:

- ATLAS:
 - dilepton and *l*+jets (*p*Pb) ATLAS-CONF-2023-063
 - *ℓ*+jets (*pp*) ATLAS-CONF-2023-068
- CMS (only pp):
 - dilepton channel CMS-PAS-TOP-20-006
 - ℓ+jets channel
 Phys. Rev. D 104 (2021) 092013

Background in $t\bar{t}$ production (dilepton and ℓ +jets channels): single-top, fake leptons, Z+jets, diboson, W+jets (only in ℓ +jets), $t\bar{t}$ +bosons

Introduction: ATLAS observation of $t\bar{t}$ in *p*Pb collisions

Observation of $t\bar{t}$ production in ℓ +jets and dilepton channels: ATLAS-CONF-2023-063

- 165 nb⁻¹ of *p*Pb collisions at $\sqrt{s_{NN}} = 8.16$ TeV recorded by ATLAS
- dilepton and ℓ +jets decay modes
- Measurement of total cross-section
- Comparison with NLO and NNLO QCD predictions

Motivation

- Probes of nuclear-PDFs
- Information on the properties of the quark-gluon plasma
- Observation of the $t\bar{t}$ dileptonic channel in *p*Pb collisions Previous analyses:
 - ℓ +jets by CMS with pPb collision at $\sqrt{s_{NN}} = 8.16$ TeV: 5 σ Phys. Rev. Lett. 119 (2017) 242001
 - dilepton by CMS with PbPb collision at $\sqrt{s_{NN}} = 5.02$ TeV: 4 σ Phys. Rev. Lett. 125 (2020) 222001

Selection and fit [ATLAS-CONF-2023-063]

• 1*e* > 2*b*-jet

• $1\mu > 2b$ -jet

● 2*ℓ* ≥ 2*b*-jet

Selection applied in six SR:

- 1*e* 1*b*-jet
- 1µ 1*b*-jet
- 2ℓ 1*b*-jet

ℓ +jets selection:

$$p_{\mathsf{T}}^\ell >$$
 18 GeV; 4 jets ($p_{\mathsf{T}} >$ 20 GeV

dilepton selection:

 $egin{aligned} {
m OS} \ p_{
m T}^{\ell} &> 18 \ {
m GeV}; \ 2 \ {
m jets} \ (p_{
m T} &> 20 \ {
m GeV}) \ {
m SF:} \ m_{\ell\ell} &> 45 \ {
m GeV} \ ({
m veto} \ 80 &< m_{\ell\ell} &< 100 \ {
m GeV}) \ {
m OF:} \ m_{\ell\ell} &> 15 \ {
m GeV} \end{aligned}$

Fit performed using H_{T} distributions.

- キョット (日) ・ (日) ・ (日) ・

tt+jets in ATLAS

-

A total systematic uncertainty of 8% is achieved.

Statistical uncertainty is 3%.

JES and the modelling of the signal and backgrounds are the dominant sources of uncertainty.

Source	unc. up	unc. down
Jet energy scale	+0.048	-0.044
$t\bar{t}$ generator	+0.048	-0.043
Fake-lepton background	+0.030	-0.027
Background	+0.030	-0.025
Luminosity	+0.029	-0.025
Muon systs.	+0.024	-0.021
W+jets	+0.023	-0.020
<i>b</i> -tagging	+0.022	-0.021
Electron systs.	+0.018	-0.017
MC statistical uncertainties	+0.011	-0.010
Jet energy resolution	+0.005	-0.004
tī PDF	+0.001	-0.001
Total syst.	+0.088	-0.081

Measurement: $\sigma_{t\bar{t}} = 57.9 \pm 2.0 \text{ (stat.)}^{+4.9}_{-4.5} \text{ (syst.) nb}$

Signal strength is measured for 6 regions with a significance over 5σ in ℓ +jets and dilepton channels separately.

Measured cross-section agrees with calculations based on several nPDF sets.

M. Príncipe (ATLAS)

Introduction: ATLAS $t\bar{t}$ and $t\bar{t}$ +jets differential cross-sections

Measurements of $t\bar{t}$ and $t\bar{t}$ +jets differential cross sections: ATLAS-CONF-2023-068

- 140 fb⁻¹ of *pp* collisions at $\sqrt{s} =$ 13 TeV recorded by ATLAS
- *l*+jets decay mode in resolved topology
- Focusing on jet observables
- Three channels: $t\bar{t}$ inclusive, $t\bar{t}$ +1jet and $t\bar{t}$ +2jets
- Absolute and normalised cross-sections at particle level
- Comparison with NLO and NNLO QCD predictions

Motivation

- Characterization of the kinematics and topology of the $t\bar{t}$ system
- Characterization of the kinematics, dynamics and topology of the two hardest QCD emissions
- Test of pQCD theory

Observables and predictions [ATLAS-CONF-2023-068]

Observables: Selected based on the sensitivity to the different predictions.

• $t\bar{t}$ inclusive: $p_{T}^{\text{jet-W1}}$, $|y^{\text{jet-W1}}|$, $p_{T}^{\text{jet-W2}}$, $|y^{\text{jet-W2}}|$, $|\Delta y^{\text{jet-W1}-\text{jet-W2}}|$ and $|\Delta \phi^{\text{jet-W1}-\text{jet-W2}}|$ • $t\bar{t}$ +1jet: $p_{T}^{\text{jet-rad1}}$, $|y^{\text{jet-rad1}}|$, $|\Delta \phi^{\text{jet-W1}-\text{jet-rad1}}|$, $|\Delta \phi^{\text{toplep}-\text{jet-rad1}}|$, $|\Delta \phi^{\text{tophad}-\text{jet-rad1}}|$ and $m^{t\bar{t}-\text{jet-rad1}}|$ • $t\bar{t}$ +2jet: $p_{T}^{\text{jet-rad2}}$, $|y^{\text{jet-rad2}}|$, $|\Delta y^{\text{jet-rad1}-\text{jet-rad2}}|$, $|\Delta \phi^{\text{jet-rad1}-\text{jet-rad2}}|$, $|\Delta \phi^{\text{toplep}-\text{jet-rad2}}|$, $|\Delta \phi^{\text{t$

Predictions:

- QCD NLO: POWHEG+PYTHIA8, POWHEG+HERWIG7, aMC@NLO+HERWIG7 and SHERPA 2.2.12
- QCD NNLO (*tī* system): POWHEG+PYTHIA8 using MINNLO_{PS} scheme
- Normalisation from Top++2.0 at NNLO+NNLL ($m_t = 172.5 \text{ GeV}$):

 $\sigma_{t\bar{t}} = 832^{+20}_{-29}$ (scale) \pm 35(PDF, $\alpha_{\rm S}$) \pm 23 (m_t) pb

Systematic uncertainties [ATLAS-CONF-2023-068]

Dominant sources of systematic uncertainties:

- At low p_T, the *b*-tagging efficiency is the dominant source of uncertainty.
- In the high p_T region, background modelling becomes the dominant systematic.
- For normalised cross-sections, the *b*-tagging uncertainty decreases significantly and the detector energy scale and resolution becomes the main source of uncertainty at low p_{T} .
- Total relative uncertainty: (normalised)
 - $t\bar{t}$ inclusive: \approx **7**% (\approx 1%) at low- p_{T}
 - $t\bar{t}$ +1jet: \approx **10**% (\approx 1.5%) at low- p_{T}
 - $t\bar{t}$ +2jet: pprox 13% (pprox 2%) at low- $p_{\rm T}$

Results: *tī* inclusive [ATLAS-CONF-2023-068]

Measured cross section as a function of $p_T^{\text{jet-W1}}$ has harder spectrum than that of $p_T^{\text{jet-W2}}$.

Measured cross section as a function of $|y^{\text{jet-W1}}|$ and $|y^{\text{jet-W2}}|$ have very similar shape and normalisation.

Comparison with NLO QCD predictions:

- Good description of p_T^{jet-W1} by SHERPA and aMC@NLO+HERWIG7.
- $p_{\rm T}^{\rm jet-W2}$ is well described by NLO predictions.
- Rapidity distributions are well described by all predictions.

Results: *tī* inclusive [ATLAS-CONF-2023-068]

Measured cross sections as functions of **angular correlations exhibit peaks** around $|\Delta y^{\text{jet-W1}-\text{jetW2}}| = 0$ and $|\Delta \phi^{\text{jet-W1}-\text{jetW2}}| = 1$.

Comparison with NLO QCD predictions:

 Angular correlation distributions are well described by the predictions.

Normalised cross-sections:

- Reduced uncertainties at low-p_T.
- Uncertainties considerably suppressed for angular distributions.

Results: $t\bar{t}$ + 1jet [ATLAS-CONF-2023-068]

Measured cross section as a function of $|y^{\text{jet-rad1}}|$ is more isotropic than that of $|y^{\text{jet-W1}}|$.

Measured cross sections as functions of $|\Delta\phi^{\text{toplep}_jet\text{-rad}1}|$ and $|\Delta\phi^{\text{tophad}_jet\text{-rad}1}|$ have different shapes. jet-rad1 tends to be farther in ϕ from toplep than from tophad.

Comparison with NLO QCD predictions:

- Good description of p_T^{jet-rad1} by SHERPA and aMC@NLO+HERWIG7.
- |*y*^{jet-rad1}| and angular correlation distributions are well described by the predictions.

Results: $t\bar{t}$ + 1jet [ATLAS-CONF-2023-068]

Measured cross section as a function of $|\Delta \phi^{\text{jet-W1}}-\phi^{\text{jet-W1}}|$ shows a peak at π and around 0.5.

Comparison with NLO QCD predictions:

- $|\Delta \phi^{\text{jet-W1}-\text{jet-rad1}}|$ distribution is well described by the predictions.
- $m^{t\bar{t}$ -jet-rad1 cross-section is well described for $m^{t\bar{t}$ -jet-rad1 < 3 TeV .

Normalised cross-sections:

• Similar conclusions than those for $t\bar{t}$ inclusive.

M. Príncipe (ATLAS)

Results: $t\bar{t}$ + 2jets [ATLAS-CONF-2023-068]

Measured cross section as a function of $|y^{\text{jet-rad2}}|$ is similar to that of jet-rad1.

Measured cross sections as functions of $|\Delta y^{\text{jet-rad1}}|$ and $|\Delta \phi^{\text{jet-rad1}}|$ have different shapes than those for jet-W1—jet-W2.

Comparison with NLO QCD predictions:

- Good description of p_T^{jet-rad2} by SHERPA and POWHEG.
- |*y*^{jet-rad2}| and angular correlation distributions are well described by the predictions.

Results: $t\bar{t}$ + 2jets [ATLAS-CONF-2023-068]

Measured cross sections as functions of $|\Delta\phi^{\text{toplep-jet-rad2}}|$ and $|\Delta\phi^{\text{tophad-jet-rad2}}|$ are more isotropic than those for jet-rad1.

Measured cross section as a function of $|\Delta \phi^{\text{jet-W1}}-\phi^{\text{jet-W1}}|$ shows similar features than that wrt jet-rad1.

Comparison with NLO QCD predictions:

- Angular correlation distributions are well described by the predictions.
- Good description of *m*^{jet-rad1—jet-rad2} by SHERPA and POWHEG.

Results: NNLO comparison [ATLAS-CONF-2023-068]

Absolute differential cross-sections in the $t\bar{t}$ inclusive and $t\bar{t}$ +1jet channels

A significant improvement in the description of the $p_{T}^{\text{jet-w1}}$, $p_{T}^{\text{jet-rad1}}$ and $m^{t\bar{t}-\text{jet-rad1}}$ is achieved with NNLO QCD predictions.

-

Image: A matrix

Results: NNLO comparison [ATLAS-CONF-2023-068]

Absolute differential cross-sections in the $t\bar{t}$ +2jet channel

NNLO predictions do not provide an improved description of $p_T^{\text{jet-rad2}}$ and $m^{\text{jet-rad1}-\text{jet-rad2}}$ observables.

MINNLO_{PS} prediction is only lowest order for second emission.

M. Príncipe (ATLAS)	$t\bar{t}$ +jets in ATLAS	30th November 2023
---------------------	---------------------------	--------------------

イロト イヨト イヨト

17/26

Results: NNLO comparison [ATLAS-CONF-2023-068]

Normalised differential cross-sections

Good description by MINNLO_{PS} with reduced theoretical uncertainties is seen for some observables, e. g. $p_{T}^{\text{jet-W1}}$ and $|\Delta \phi^{\text{toplep-jet-rad2}}|$.

With reduced uncertainties, differences between the measurement and the prediction are seen in some regions of the phase space of some observables, e. g. $|y^{\text{jet-W1}}|$ and $m^{tt-\text{jet-rad1}}$.

CMS dilepton differential cross-sections [CMS-PAS-TOP-20-006]

Measurement of differential cross sections for the production of top quark pairs and of additional jets: CMS-PAS-TOP-20-006

- 138 fb⁻¹ of *pp* collisions at $\sqrt{s} =$ 13 TeV recorded by CMS
- dilepton decay mode: e^+e^- , $\mu^+\mu^-$ and $e^\pm\mu^\mp$
- absolute and normalised differential cross-sections (single, double and triple)
- cross-sections unfolded to particle and parton levels
- comparisons with NLO and NNLO predictions and different PDFs

Motivation: Comprehensive measurements of kinematic and topological properties of $t\bar{t}$ events:

- t, \bar{t} and $t\bar{t}$ observables.
- ℓ and *b*-jets observables.
- events with additional jets (correlation with t and tt
 kinematics).

Comparison between ATLAS and CMS

ATLAS-CONF-2023-068

CMS-PAS-TOP-20-006

CMS-PAS-TOP-20-006

CMS has measured the additional jet multiplicity at different jet p_{T} thresholds.

POW+PYT and POW+HER describe the data within uncertainties at $p_T^{min} = 40$ GeV while POW+PYT exhibits a significantly worse description at $p_T^{min} = 100$ GeV.

ATLAS measurement of $p_T^{\text{jet-rad1}}$ shows a similar description of the data by POW+PYT and POW+HER up to 2 TeV.

ELE NOR

CMS dilepton differential cross-sections [CMS-PAS-TOP-20-006]

FxFx+PYT has poor description for $N_{\text{jet}} = 1$ in all rapidity bins at $m_{t\bar{t}} > 500 \text{ GeV}$. POW+PYT and POW+HER has largest discrepancy w.r.t data for $N_{\text{jet}} > 2$ at $m_{t\bar{t}} < 500 \text{ GeV}$.

M. Príncipe (ATLAS)

CMS *l*+jets differential cross-sections [Phys. Rev. D 104 (2021) 092013]

Measurement of differential $t\bar{t}$ production cross sections in the full kinematic range using ℓ +jets events: Phys. Rev. D 104 (2021) 092013

- 137 fb⁻¹ of *pp* collisions at $\sqrt{s} =$ 13 TeV recorded by CMS.
- absolute and normalised cross-sections
- cross-sections unfolded to particle and parton levels
- focus on observables describing top-quarks and $t\bar{t}$ system
- comparison only with NLO predictions

Motivation: CMS Run-2 paper on differential cross-sections of $t\bar{t}$ production at 13 TeV:

- study of full kinematic range in the ℓ +jets channel.
- combination of resolved and boosted topologies.

CMS *l*+jets differential cross-sections [Phys. Rev. D 104 (2021) 092013]

Additional jet observables:

Three cross-sections measured as functions of jet observables.

For the additional jets distributions all predictions describe the measurement, but $N_{jet} \ge 6$ POW+PYT has the best description.

The cross-section as a function of $H_{\rm T}$, the scalar $p_{\rm T}$ sum of the additional jets, is measured and well described by NLO predictions.

The cross-section as a function of m_{evt} (similar to $m^{t\bar{t}-\text{jet-rad1}}$ from ATLAS) is measured. It is defined as the invariant mas of the $t\bar{t}$ and all additional jets.

NLO predictions describe well the m_{evt} distribution except at low m_{evt} (normalised) where POW+PYT has the best description.

Comparison between ATLAS and CMS

AT LAS-CONT-2023-008 AT LAS-CONF-2023-

CMS measures up to 5 TeV, whereas ATLAS measures up to 6.5 TeV.

 \rightarrow In the common region, NLO and NNLO predictions describe the data within uncertainties.

Differences between data and NLO prediction are observed for m > 4 TeV (ATLAS)

 \rightarrow NNLO is closer to data in this region with smaller uncertainties than NLO.

Experimental uncertainties similar for both measurements in common region: $\sim 10 - 15\%$ \rightarrow for m > 4 TeV (ATLAS) statistical fluctuations becomes a relevant source of uncertainty.

M. Príncipe (ATLAS)

Comparison between ATLAS and CMS

QCD radiation kinematics is measured by $p_T^{\text{jet-rad1}}$ and $p_T^{\text{jet-rad2}}$ (ATLAS) and H_T (CMS) distributions.

POW+PYT and POW+HER exhibit a reasonable description of H_T up to 2 TeV within uncertainties. POW+PYT and POW+HER has a larger disagreement with data in the last bins of $p_T^{\text{jet-rad1}}$, while for $p_T^{\text{jet-rad2}}$ the description is good.

<ロ> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Summary and Conclusions

- $t\bar{t}$ cross-section has been measured in *p*Pb collisions with $\sqrt{s_{NN}} = 8.16$ TeV. Both dilepton and ℓ +jets channels have a significance over 5σ .
- Absolute and normalised differential cross sections at particle level measured for $t\bar{t}(+jets)$ production in ℓ +jets decay mode using 140 fb⁻¹ of ATLAS *pp* data at $\sqrt{s} = 13$ TeV.
 - Cross-sections are measured as functions of jet transverse momenta, jet angular correlations and invariant masses in the $t\bar{t}$ inclusive, $t\bar{t}$ +1jet and $t\bar{t}$ +2jets channels.
 - NLO QCD predictions describe well the shape of the angular observables, but the transverse momenta and invariant masses are described in general only by SHERPA.
 - NNLO QCD predictions give an improved description with reduced the theoretical uncertainties.
 - The normalised cross sections show there are regions of phase space where predictions fail to describe the data.
- The comparison between ATLAS and CMS measurements shows similar behaviour for the NLO predictions in the transverse momentum observables.

M. Príncipe (ATLAS)

Back-up

-

メロト メポト メヨト メヨ

Normalised cross-sections ($t\bar{t}$ inclusive) [ATLAS-CONF-2023-068]

Normalised cross-sections ($t\bar{t}$ inclusive) [ATLAS-CONF-2023-068]

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Normalised cross-sections ($t\bar{t}$ +1jet) [ATLAS-CONF-2023-068]

Normalised cross-sections ($t\bar{t}$ +1jet) [ATLAS-CONF-2023-068]

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Normalised cross-sections ($t\bar{t}$ +2jet) [ATLAS-CONF-2023-068]

Normalised cross-sections ($t\bar{t}$ +2jet) [ATLAS-CONF-2023-068]

Comparison between ATLAS and CMS

Measurements of normalised cross-sections have reduced uncertainties at low values of the invariant masses.

ATLAS measurements are in agreement with NLO and NNLO predictions below 5 TeV. For CMS measurements, differences are seen for m < 400 GeV.

-

Image: A (1)

Comparison between ATLAS and CMS

-

• • = • • = •