

On the coupling of axion-like particles to the top quark

with Maeve Madigan, Veronica Sanz and Maria Ubiali

arxiv:2303.17634 JHEP09(2023)063

Fabian Esser IFIC Universidad de Valencia

LHCtop WG Open meeting CERN 30.11.2023

Axion-Like Particles (ALPs)

- ALPs appear as (pseudo) Goldstone bosons in many SM extensions with a spontaneous breaking of a global symmetry
- CP odd \Rightarrow pseudo-scalar couplings
- Shift symmetry $a \rightarrow a + c$
 - \rightarrow restricts ALP couplings to SM particles
 - \rightarrow couplings momentum dependent

 \Rightarrow energy scaling for processes involving ALPs differs from background processes

ALP searches

- traditional and still active studies:
 - \rightarrow cosmological, astrophysical and detector signatures
 - \rightarrow focus on ALP couplings to photons and electron-positron pairs
 - \rightarrow rather limited mass range (keV MeV)
- using collider probes:
 - → ALPs can be searched for at colliders in a large mass range, shown in studies of ALP couplings to gluons and di-boson pairs [Mimasu, Sanz, 2015]
 - → searches through both resonant signatures and non-resonant production of light ALPs
- Here:
 - \rightarrow probe LHC production of ALPs in a large mass range
 - \rightarrow fill gaps in collider studies of ALP-fermion couplings
 - \rightarrow assume ALP collider stable and invisible (*complementary approach*)

ALP EFT and ALP-top coupling

- ALP associated with a heavy new scale $f_a \gg v$
 - $\Rightarrow \text{EFT approach } \mathscr{L} = \mathscr{L}_{SM} + \mathscr{L}_{a}$ $\mathscr{L}_{a} = \frac{1}{2} (\partial_{\mu}a)(\partial^{\mu}a) + \frac{1}{2}m_{a}^{2}a^{2} + c_{\tilde{W}}\mathcal{O}_{\tilde{W}} + c_{\tilde{B}}\mathcal{O}_{\tilde{B}} + c_{\tilde{G}}\mathcal{O}_{\tilde{G}} + \sum_{f=u,d,e,Q,L} c_{f}\mathcal{O}_{f}$
 - couplings to gauge bosons:
 - couplings to fermions:
 - for top quark using EOM:

$$\mathcal{O}_{\tilde{X}} = -\frac{a}{f_a} X^a_{\mu\nu} \tilde{X}^{\mu\nu,a}$$
$$\mathcal{O}_f = \frac{\partial_\mu a}{f_a} \bar{f} \gamma^\mu f$$
$$\mathcal{L} \supset -ic_t \frac{m_t a}{2f_a} \left(\bar{t} \gamma^5 t \right)$$

- \Rightarrow Couplings are proportional to the fermion mass!
- \Rightarrow Focus on ALP-top coupling c_t and set all other couplings to zero

ALP-top coupling induces couplings to vector bosons at 1-loop, e.g. to $\gamma\gamma$:

$$\mathscr{L}^{\mathsf{II}} \supset -\frac{a}{f_a} c_{a\gamma\gamma} F_{\mu\nu} F^{\mu\nu} \quad \text{with} \quad c_{a\gamma\gamma}^{eff} = -c_t Q_t^2 N_c B_1 \left(\frac{4m_t^2}{p^2}\right) \quad \mathsf{Ga}$$

[Bonilla, Brivio, Gavela, Sanz, 2021]

Asymptotic behaviour:

- $B_1 \rightarrow 1$ for high p^2
- $B_1 \rightarrow 0$ for low p^2

 \rightarrow probe c_t through ALP-vector boson couplings at the LHC!

Constraining *C*_t

Motivate further collider searches to put constraints on the ALP-top coupling c_t

- 1. reinterpret a SUSY search in a final state with fully leptonic top pairs and missing transverse energy (**direct limits**)
- 2. indirect limits from
 - A. ALP-top contributions to loop-induced $gg \rightarrow a \rightarrow t\bar{t}$ production
 - B. recasting limits on loop-induced couplings to vector bosons

1. Direct constraints on C_t

INSTITUT DE FÍSICA C O R P U S C U L A R

- obtained from $pp \rightarrow t\bar{t} + a$ with subsequent leptonic decay of the tops
- assume ALP collider stable, escapes the detector as missing transverse energy (MET)

Reinterpret a Run II **ATLAS** search for top squarks in events with 2 leptons, 2 b-jets and MET at $\sqrt{s} = 13$ TeV, $\mathscr{L} = 139$ fb⁻¹ [2102.134929]

Fabian Esser

Reinterpreting a SUSY top-squark search

- SUSY benchmark: pair production of stops with prompt decay into top quarks and neutralinos
- SM background, ALP signal and SUSY benchmarks all lead to the same final state topology of

 $21 \pm 2i \pm MET$

with
$$MET = \begin{cases} \nu & SM \\ \nu + a & ALP \\ \nu + \tilde{\chi}^0 & SUSY \end{cases}$$

 $\begin{array}{c} q \\ \bar{q} \\ \bar{q} \\ \bar{q} \\ \bar{q} \\ \bar{q} \\ \bar{l}_{1}^{*} \\ \bar{t}_{1}^{*} \\ \bar{t}_{1}^{*} \\ \bar{t}_{1}^{*} \\ \bar{t}_{1}^{*} \\ \bar{v}_{l} \\$

We looked at p_T^{miss} and $\Delta \Phi_{boost}$ distributions:

The search is sensitive enough to distinguish ALP signal events from SM background and SUSY interpretations

ATLAS: measurement of the stranverse mass m_{T2} distribution in the 2l + 2j + MET final state with different lepton flavours:

$$m_{T2}(\vec{p}_{T1}, \vec{p}_{T2}, \vec{p}_{T}^{miss}) = \min_{\vec{q}_{T1} + \vec{q}_{T2} = \vec{p}_{T}^{miss}} \left(\max\left[m_{T}(\vec{p}_{T1}, \vec{q}_{T1}), m_{T}(\vec{p}_{T2}, \vec{q}_{T2}) \right] \right)$$

with transverse mass of lepton-neutrino pairs

$$m_T(\vec{p}_T, \vec{q}_T) = \sqrt{2 |\vec{p}_T| |\vec{q}_T| (1 - \cos(\Delta \Phi))}$$

Generate ALP signal with *MadGraph5_aMC@NLO* and *NNPDF4.0* in the 4-flavour scheme

ſ	$f_a = 1$ TeV
	$m_a = 1 \text{ MeV}$
	$c_{a\Phi} = 1$

neutrinos

K-factor:

We generate the ALP signal at LO, no higher order corrections, hadronisation or detector effects

⇒ need a *normalisation factor* between our simulation and ATLAS background simulation

 \Rightarrow generate $pp \rightarrow t\bar{t}$ (dominant background) and calculate normalisation from first bin

ALP signal

- compare ALP signal + SM background for different c_t to data
- show only experimental uncertainties, MadGraph and SM background uncertainties negligible
- $t\overline{t}a$ vertex proportional to c_t/f_a , global factor $(c_t/f_a)^2$ in the signal events
- Assume a Poisson likelihood

$$\mathcal{L}(c_t) = \prod_{k=1}^{N_{\text{bins}}} \frac{\exp\left(-\left(\left(\frac{c_t}{f_a}\right)^2 s_k + b_k\right)\right)\right) \left(\left(\frac{c_t}{f_a}\right)^2 s_k + b_k\right)^{n_k}}{n_k!}$$

• use the profile likelihood ratio to obtain limits on c_t :

$$\left|\frac{f_a}{c_t}\right| > 552.2 \text{ GeV at } 95\% \text{ CL}$$

2A. ALP mediated $t\bar{t}$ production

light off-shell ALP contributing non-resonantly to $gg \rightarrow a \rightarrow t\bar{t}$, calculate at tree-level with effective coupling $c_{agg}^{eff} = -\frac{\alpha_s}{8\pi}c_t$

- Derivative couplings in $\mathcal{O}_{\tilde{G}}$ enhance the \hat{s} dependence relative to the SM
- partonic ALP cross-section and ALP-SM interference:

$$\hat{\sigma}_{ALP}(\hat{s}) \sim \frac{c_t^2 c_{\tilde{G}} m_t^2}{f_a^4} \left(1 - \frac{2m_t^2}{\hat{s}} \right) \qquad \hat{\sigma}(\hat{s})_{ALP-SM} \sim \frac{1}{\hat{s}} \log\left(\sqrt{\frac{\hat{s}}{m_t^2}} \right)$$

• SM-ALP interference can be suppressed by considering high- p_T top quarks (\rightarrow ATLAS) but will dominate for low \hat{s}

Study the impact of offshell-ALP signals on two measurements, use Gaussian likelihoods

- 1. CMS: $m_{t\bar{t}}$ distribution in the lepton + jets channel, Run-II data [2108.02803]
- 2. ATLAS: p_T spectrum of the boosted hadronically decaying top-quark [2202.12134]

ALP mediated $t\bar{t}$ production

Fabian Esser

2B. ALP mediated diboson production

Non-resonant searches with ALP as off-shell mediator of a $2\rightarrow 2$ scattering process

constrain g_{aVV} through $gg \rightarrow VV$ diboson production, data from CMS search at $\sqrt{s} = 13$ TeV [Gavela, No, Sanz, Trocóniz, 2019], [Carra et al., 2021] *here:* use loop-induced couplings g_{aVV}^{eff} to recast these limits into limits on c_t

$$\begin{vmatrix} g_{agg}g_{aZZ} \end{vmatrix} < 1 \text{ TeV}^{-2} \qquad \Rightarrow \qquad \begin{vmatrix} \frac{f_a}{c_t} \end{vmatrix} > 3.5 \text{ GeV}$$

$$\begin{vmatrix} g_{agg}g_{a\gamma\gamma} \end{vmatrix} < 0.08 \text{ TeV}^{-2} \qquad \Rightarrow \qquad \begin{vmatrix} \frac{f_a}{c_t} \end{vmatrix} > 22.5 \text{ GeV}$$

$$\begin{vmatrix} g_{agg}g_{aZ\gamma} \end{vmatrix} < 0.37 \text{ TeV}^{-2} \qquad \Rightarrow \qquad \begin{vmatrix} \frac{f_a}{c_t} \end{vmatrix} > 11.0 \text{ GeV}$$

Fabian Esser

Summary of constraints from Run-II data

red dashed lines: EFT validity limits

COR

Fabian Esser

Summary

Fabian Esser

Conclusion & Outlook

- ALP EFT with focus on the ALP-top coupling motivated by the proportionality to the fermion mass
- we studied the current sensitivity of the LHC to a light ALP coupled to top-pairs, interesting interplay between
 - \rightarrow reinterpretation of a SUSY search for stops ($t\bar{t} + MET$)
 - \rightarrow reinterpretation of SM measurements of $t\bar{t}$ production at high invariant mass
 - \rightarrow recasting limits on ALP to vector boson couplings
- for collider stable ALPs: the direct limits are currently stronger
 - \rightarrow however, the scaling with luminosity is different, in the future the high $m_{t\bar{t}}$ could become more sensitive than the $t\bar{t} + MET$ search
- dedicated ALP-specific experimental analyses would be interesting:
 - → reinterpret Top-SMEFT studies as ALP searches (long tails)
 - \rightarrow ALP in proton PDF
 - \rightarrow study of decaying ALPs and LLPs

Fabian Esser

Mapping the SMEFT to UV models for 4F operators

Back-up slides

Fabian EsserMapping the SMEFT to UV models for 4F operators

c_t from model building

ALP-top coupling natural for example in models with partial compositeness:

- see-saw Composite Higgs: Higgs doublets mix pGB from both symmetry breakings
- ALPs are pGB associated with heavy scale $f_a \sim \Lambda_{6 \rightarrow 5}$
- EWSB involves new fermionic composites, the top partners T with $m_T \sim \Lambda_{6 \rightarrow 5}$
- T couples to *a* via

$$\mathcal{L} \supset - c_T \frac{\partial_\mu a}{\Lambda_{6 \to 5}} (\bar{T} \gamma^\mu T)$$

• T mixes with top quarks through mass mixing $-\Delta \bar{t}_R T + h \cdot c$.

Fabian Esser

Kinematics of $t\bar{t} + a$ production

 compare the distributions of 2 kinematic variables for SM background, ALP models with different masses and 2 benchmark SUSY models:

 \Rightarrow Search well-suited to distinguish ALP signals from SM background and SUSY

Fabian Esser

Phase space cuts defining the signal region in the ATLAS search for $t\overline{t}$ + MET:

parameter	value
p_T leading lepton	> 25 GeV
p_T subleading lepton	$> 20 { m GeV}$
m_{ll}	> 20 GeV
$m_{T2}(ll)$	> 110 GeV
$\left m_{Z}-m_{ll} ight $	> 20 GeV
$n_{ m b-jets}$	≥ 1
$\Delta\Phi_{ m boost}$	< 1.5 rad

On the collider stability of the ALP

- is the distance the ALP travels before decaying larger than the typical detector size (~meters)?
- We find that for $|f_a/c_t| \sim 1$ TeV this holds up to $m_a < 200$ MeV, for larger values of $|f_a/c_t|$ even up to higher values of m_a

Fabian Esser

EFT validity

- is the EFT adequate in the regime in which we obtain the limits?
- is the scale of the EFT expansion f_a larger than the typical p^2 of the process?
- "Is the limit on $|f_a/c_t|$ consistent with $f_a > \sqrt{\hat{s}}$?"

