ALP effects in top-pair production

Anh Vu Phan (Vu), Susanne Westhoff LHC TOP WG meeting, 30 Nov 2023

New

physics

▲ Energy

AXION-LIKE PARTICLE (ALP)

• Generalization of the axion (a pseudo-scalar)

 $\mathcal{L}_{eff}(\mu) \supset \frac{1}{2} \partial_{\mu} a \ \partial^{\mu} a - \frac{m_a^2}{2} a^2 - \sum_q m_q c_{qq} \frac{a}{f_a} \bar{q} i \gamma^5 q + \tilde{c}_{GG} \frac{a}{f_a} \frac{\alpha_s}{4\pi} G_{\mu\nu}^A \tilde{G}^{A,\mu\nu} \longrightarrow \mu$ $\overset{a}{\longrightarrow} \overset{a}{\longrightarrow} \overset{a}$

ALP EFFECTS IN TOP-PAIR PRODUCTION

Leading contributions

RENORMALIZATION (SIMPLIFIED)

$$\mathcal{L}_{\rm eff}(\mu) \supset \mathbb{Z}_2 \bar{t} i \partial_\mu \gamma^\mu t - \mathbb{Z}_2 \mathbb{Z}_m m_t \bar{t} t + \mathbb{Z}_1 g_s G^a_\mu \bar{t} \gamma^\mu T^a t$$

RENORMALIZATION (SIMPLIFIED)

```
\mathcal{L}_{\rm eff}(\mu) \supset \mathbb{Z}_2 \bar{t} i \partial_\mu \gamma^\mu t - \mathbb{Z}_2 \mathbb{Z}_m m_t \bar{t} t + \mathbb{Z}_1 g_s G^a_\mu \bar{t} \gamma^\mu T^a t
```


INDIVIDUAL CONTRIBUTIONS

SM: PRD 104 (2021) 092013

ALP MASS DEPENDENCE

 $c_{GG}(\Lambda)$ **DEPENDENCE**

$$rac{c_{tt}(\Lambda)}{f_a} = 20 \ {
m TeV^{-1}}$$
 ; $m_a = 10 \ {
m GeV}$

Conclusions

- Among the SM fermions, **top is most sensitive to ALPs**.
- We constrain the ALP-top coupling using top kinematic distributions.
- $\left|\frac{c_{tt}}{f_a}\right| \le 11 \text{ TeV}^{-1}$ (for $m_a \le 200 \text{ GeV}$ and $c_{GG} = 0$)
- ALP effect is stronger as m_a approaches $2m_t$.
- The sensitivity to the ALP-top coupling strongly depends on the ALP-gluon coupling.

Thank you for listening!

BACKUP SLIDES

BACKUP SLIDES FITTING METHOD

Höcker et al. (2001); Charles et al. (2017)

RFit

Minimize the log-likelihood function

$$\chi^2(c_{tt}) = \vec{\chi}_d^T \mathbf{C}^{-1} \vec{\chi}_d$$

Experimental $\chi_{d,i} = |data_i - prediction_i|$

covariance matrix

- 1. For each value of c_{tt}
 - 1. Let all prediction_i vary within their theoretical uncertainty range
 - 2. Find $\chi^2_{\min}(c_{tt})$, the minimum of $\chi^2(c_{tt})$ w.r.t all possible values of prediction_i
- 2. Find $\chi^2_{\min} = \min_{c_{tt}} \chi^2_{\min}(c_{tt})$
- 3. A value of c_{tt} is excluded at 95% C.L. if $\Delta \chi^2(c_{tt}) = \chi^2_{\min}(c_{tt}) \chi^2_{\min} \ge 3.84$. (For $c_{GG}-c_{tt}$ fit, we assume 2 d.o.f)
- 4. Best bound of all distributions is selected

RESULTS **ALP MASS DEPENDENCE**

 $c_{tt}(\Lambda)$ $c = 20 \text{ TeV}^{-1}$; $c_{GG}(\Lambda) = 0$ Ja

RESULTS EFFECTIVE COUPLING APPROXIMATION

$$\frac{c_{tt}(\Lambda)}{f_a} = 20 \text{ TeV}^{-1} \text{ ; } m_a = 10 \text{ GeV}$$

Data: PRD 104 (2021) 092013 ALP uncertainty: 10%

$$\int \frac{c_{tt}(\Lambda)}{f_a} = 20 \text{ TeV}^{-1}$$
; $c_{GG}(\Lambda) = 0$; $m_a = 10 \text{ GeV}$

Data: PRD 104 (2021) 092013 ALP uncertainty: 10%

$$\left(\frac{c_{tt}(\Lambda)}{f_a} = 20 \text{ TeV}^{-1} \text{ ; } c_{GG}(\Lambda) = 0 \text{ ; } m_a = 10 \text{ GeV}\right)$$

Fit:
$$\left|\frac{c_{tt}(\Lambda)}{f_a}\right| \le 14.1 \text{ TeV}^{-1}$$

(95% C.L.)

DISCUSSIONS RENORMALIZATION REVISITED

In the SM, no counterterm of the form *HHHQu*

⇒ need SMEFT counterterms For example, from $H^{\dagger}H(\bar{Q}Hu)$ + h.c.

DISCUSSIONS RENORMALIZATION REVISITED

DISCUSSIONS **RENORMALIZATION REVISITED**

The complete story

DISCUSSIONS RENORMALIZATION IN THE WARSAW BASIS?

DISCUSSIONS RENORMALIZATION IN THE WARSAW BASIS?

DISCUSSIONS RENORMALIZATION IN THE WARSAW BASIS?

Kallosh and Tyutin (1973)

DISCUSSIONS RENORMALIZATION IN THE WARSAW BASIS?

Kallosh and Tyutin (1973)

DISCUSSIONS RENORMALIZATION IN THE WARSAW BASIS

$$\mathcal{L}_{\rm eff}(\mu) \supset \mathbb{Z}_2 \bar{t} i \partial_\mu \gamma^\mu t - \mathbb{Z}_2 m_t \bar{t} t + \mathbb{Z}_2 g_s G^a_\mu \bar{t} \gamma^\mu T^a t + \left(\mathbb{C}_{uH}^{(0)} H^\dagger H(\bar{Q} H u) + \text{h.c.} \right)$$

