Quantum Entanglement and Bell Inequality Violation in Semi-Leptonic Top Decays

Tao Han, Matthew Low, Tong Arthur Wu

[2310.17696](https://arxiv.org/abs/2310.17696)

Questions:

- 1. How strong is the entanglement between $t\bar{t}$ in LHC?
- 2. Does $t\bar{t}$ violate Bell's inequality?

Questions:

- 1. How strong is the **entanglement** between $t\bar{t}$ in LHC?
- 2. Does $t\bar{t}$ violates Bell's inequality?

Interesting property of quantum state

Questions:

- 1. How strong is the entanglement between $t\bar{t}$ in LHC?
- 2. Does $t\bar{t}$ violates **Bell's inequality**?

Refutes local hidden variable theory

Questions:

- 1. How strong is the entanglement between $t\bar{t}$ in LHC?
- 2. Does $t\bar{t}$ violates **Bell's inequality**?

Refutes local hidden variable theory

If try to understand quantum with classical theory \Rightarrow must be some nonlocal theory ⇒

Density matrix

$$
\rho = \sum_{i} n_{i} |\phi_{i}\rangle \langle \phi_{i}| \qquad \qquad \langle \mathcal{O} \rangle = \text{Tr}(\mathcal{O}\rho)
$$

Density matrix

$$
\rho = \sum_{i} n_{i} |\phi_{i}\rangle \langle \phi_{i}| \qquad \qquad \langle \mathcal{O} \rangle = \text{Tr}(\mathcal{O}\rho)
$$

Production density matrix for $t\bar{t}$

$$
\rho_{ab,\bar{a}\bar{b}} \propto R_{ab,\bar{a}\bar{b}} = \overline{\sum_{\text{initial}}} \mathcal{M}(XY \to t_a \, \bar{t}_{\bar{a}}) \, \mathcal{M}^*(XY \to t_b \, \bar{t}_{\bar{b}})
$$

Density matrix

$$
\rho = \sum_{i} n_{i} |\phi_{i}\rangle \langle \phi_{i}| \qquad \qquad \langle \mathcal{O} \rangle = \text{Tr}(\mathcal{O}\rho)
$$

Production density matrix for $t\bar{t}$

$$
\rho_{ab,\bar{a}\bar{b}} \propto R_{ab,\bar{a}\bar{b}} = \overline{\sum_{\text{initial}}}\mathcal{M}(XY \to t_a\,\bar{t}_{\bar{a}}) \, \mathcal{M}^*(XY \to t_b\,\bar{t}_{\bar{b}})
$$

Decomposition of two-qubit density matrix

$$
\rho = \frac{1}{4} \Big(\mathbb{I}_4 + P_i^A \left(\sigma_i \otimes \mathbb{I}_2 \right) + P_i^B \left(\mathbb{I}_2 \otimes \sigma_i \right) + C_{ij} \left(\sigma_i \otimes \sigma_j \right) \Big)
$$

Density matrix

$$
\rho = \sum_{i} n_{i} |\phi_{i}\rangle \langle \phi_{i}| \qquad \qquad \langle \mathcal{O} \rangle = \text{Tr}(\mathcal{O}\rho)
$$

Production density matrix for $t\bar{t}$

$$
\rho_{ab,\bar{a}\bar{b}} \propto R_{ab,\bar{a}\bar{b}} = \overline{\sum_{\text{initial}}} \mathcal{M}(XY \to t_a \bar{t}_{\bar{a}}) \mathcal{M}^*(XY \to t_b \bar{t}_{\bar{b}})
$$

Decomposition of two-qubit density matrix

$$
\rho = \frac{1}{4} \Big(\mathbb{I}_4 + P_i^A \left(\sigma_i \otimes \mathbb{I}_2 \right) + P_i^B \left(\mathbb{I}_2 \otimes \sigma_i \right) + C_{ij} \left(\sigma_i \otimes \sigma_j \right) \Big)
$$

Polarization vector
Spin correlation matrix

Entanglement

 $\overline{}$

Concurrence

$$
\mathcal{C}(\rho) = \begin{cases} \frac{1}{2} \max(|C_1 + C_2| - 1 - C_3, 0), & C_3 \le 0 \\ \frac{1}{2} \max(|C_1 - C_2| - 1 + C_3, 0), & C_3 \ge 0 \end{cases}
$$

 C_i : eigenvalues of $\{C_{ij}\}$

Entanglement

Concurrence

$$
\mathcal{C}(\rho) = \begin{cases} \frac{1}{2} \max(|C_1 + C_2| - 1 - C_3, 0), & C_3 \le 0 \\ \frac{1}{2} \max(|C_1 - C_2| - 1 + C_3, 0), & C_3 \ge 0 \end{cases}
$$

 C_i : eigenvalues of $\{C_{ij}\}$

Bell's inequality

$$
\langle A_1 B_1 \rangle - \langle A_1 B_2 \rangle + \langle A_2 B_1 \rangle + \langle A_2 B_2 \rangle \le 2
$$

E.g., choosing $A_1 = \sigma_1$, $A_2 = \sigma_3$, $B_1 = \pm \frac{1}{\sqrt{2}}(\sigma_1 + \sigma_3)$, $B_2 = \pm \frac{1}{\sqrt{2}}(-\sigma_1 + \sigma_3)$ \implies $|C_{11} \pm C_{33}| \leq \sqrt{2}$

$$
\sigma(XY \to t\bar{t} \to (A_1A_2A_3)(B_1B_2B_3)) = \int d\Omega^A d\Omega^B \left(\frac{d\Gamma_{ab}}{d\Omega^A}\right) R_{ab,\bar{a}\bar{b}} \left(\frac{d\Gamma_{\bar{a}\bar{b}}}{d\Omega^B}\right)
$$

$$
\frac{d\Gamma_{ab}}{d\Omega} \propto \delta_{ab} + \kappa \sigma_{ab}^i \Omega^i
$$
Spin analyzing power

$$
\sigma(XY \to t\bar{t} \to (A_1 A_2 A_3)(B_1 B_2 B_3)) = \int d\Omega^A d\Omega^B \left(\frac{d\Gamma_{ab}}{d\Omega^A}\right) R_{ab,\bar{a}\bar{b}} \left(\frac{d\bar{\Gamma}_{\bar{a}\bar{b}}}{d\Omega^B}\right)
$$

$$
\frac{d\Gamma_{ab}}{d\Omega} \propto \delta_{ab} + \kappa \sigma_{ab}^i \Omega^i
$$
Spin analyzing power

$$
\implies \frac{1}{\sigma} \frac{d\sigma}{d\Omega^A d\Omega^B} = \frac{1}{(4\pi)^2} \left(1 + \kappa^A P_i^A \Omega_i^A + \kappa^B P_i^B \Omega_i^B + \kappa^A \kappa^B \Omega_i^A C_{ij} \Omega_j^B \right)
$$

Direction of A, B

$$
\sigma(XY \to t\bar{t} \to (A_1A_2A_3)(B_1B_2B_3)) = \int d\Omega^A d\Omega^B \left(\frac{d\Gamma_{ab}}{d\Omega^A}\right) R_{ab,\bar{a}\bar{b}} \left(\frac{d\Gamma_{\bar{a}\bar{b}}}{d\Omega^B}\right)
$$

$$
\frac{d\Gamma_{ab}}{d\Omega} \propto \delta_{ab} + \kappa \sigma_{ab}^i \Omega^i
$$
Spin analyzing power

$$
\implies \frac{1}{\sigma} \frac{d\sigma}{d(\cos\theta_i^A \cos\theta_j^B)} = -\frac{1 + \kappa^A \kappa^B C_{ij} \cos\theta_i^A \cos\theta_j^B}{2} \log \left| \cos\theta_i^A \cos\theta_j^B \right|
$$
Polar angle of A with respect to the i-th axis

$$
\sigma(XY \to t\bar{t} \to (A_1 A_2 A_3)(B_1 B_2 B_3)) = \int d\Omega^A d\Omega^B \left(\frac{d\Gamma_{ab}}{d\Omega^A}\right) R_{ab,\bar{a}\bar{b}} \left(\frac{d\Gamma_{\bar{a}\bar{b}}}{d\Omega^B}\right)
$$

$$
\frac{d\Gamma_{ab}}{d\Omega} \propto \delta_{ab} + \kappa \sigma_{ab}^i \Omega^i
$$
Spin analyzing power

$$
\implies C_{ij} = \frac{4}{\kappa^A \kappa^B} \frac{N(\cos \theta_i^A \cos \theta_j^B > 0) - N(\cos \theta_i^A \cos \theta_j^B < 0)}{N(\cos \theta_i^A \cos \theta_j^B > 0) + N(\cos \theta_i^A \cos \theta_j^B < 0)}
$$

$$
\sigma(XY \to t\bar{t} \to (A_1 A_2 A_3)(B_1 B_2 B_3)) = \int d\Omega^A d\Omega^B \left(\frac{d\Gamma_{ab}}{d\Omega^A}\right) R_{ab,\bar{a}\bar{b}} \left(\frac{d\Gamma_{\bar{a}\bar{b}}}{d\Omega^B}\right)
$$

$$
\frac{d\Gamma_{ab}}{d\Omega} \propto \delta_{ab} + \kappa \sigma_{ab}^i \Omega^i
$$
Spin analyzing power

$$
\sum_{i,j} C_{ij} = \frac{4}{\kappa^A \kappa^B} \frac{N(\cos \theta_i^A \cos \theta_j^B > 0) - N(\cos \theta_i^A \cos \theta_j^B < 0)}{N(\cos \theta_i^A \cos \theta_j^B > 0) + N(\cos \theta_i^A \cos \theta_j^B < 0)}
$$

$$
\delta C_{ij} \propto \frac{1}{\kappa^A \kappa^B} \frac{1}{\sqrt{N}}
$$

Semi-Leptonic Decay

Larger branching ratio, higher significancesignificance $(t\bar{t} \to \ell j)$
significance $(t\bar{t} \to \ell \ell)$ = $\frac{\kappa_{\ell} \kappa_{\text{opt}}}{\kappa_{\ell} \kappa_{\ell}} \sqrt{\frac{\text{BR}(t\bar{t} \to \ell j)}{\text{BR}(t\bar{t} \to \ell \ell)}}$ $\approx 0.64 \times \sqrt{6} = 1.6$

Which basis?

Beam basis {x,y,z}:

Cancellation leads to null result

Helicity basis {r,k,n} is more sensitive ! Maintain the entanglement with no cancellations after averaging over phase space

Outline

Outline

(Uncertainties recalled by reconstruction efficiency from simulation)

Full detector simulation with Madgraph $5 +$ Pythia $8 +$ Delphes 3 Reconstructed based on the pseudo-top algorithm.

Full detector simulation with Madgraph $5 +$ Pythia $8 +$ Delphes 3 Reconstructed based on the pseudo-top algorithm.

Difficulties: **①** Low efficiency

We need:

angular distribution in all directions

 p_T , η cut: throw away most of events :(

 \Rightarrow Efficiency: 0.01-0.2

Full detector simulation with Madgraph $5 +$ Pythia $8 +$ Delphes 3 Reconstructed based on the pseudo-top algorithm.

:(

Difficulties: **②** Smeared angular distribution

An asymmetry of 0.5 was smeared to 0.05

Solution: Parametric Fit

Detector effects can be quantified by the Response Matrix R:

$$
T_{_{\rm{ruth}}} \xrightarrow{\rm{folded}} D_{_{\rm{etected}}} = R \cdot T_{_{\rm{ruth}}}
$$

Solution: Parametric Fit

Detector effects can be quantified by the Response Matrix R:

$$
T_{_{\rm{ruth}}} \xrightarrow{\rm{folded}} D_{_{\rm{etected}}} = R \cdot T_{_{\rm{ruth}}}
$$

Solution: Parametric Fit

Detector effects can be quantified by the Response Matrix R:

$$
T_{\textnormal{ruth}} \xrightarrow{\textnormal{folded}} D_{\textnormal{etected}} = R \cdot T_{\textnormal{ruth}}
$$

We can also fold the theoretical distribution:

$$
T_{\text{heavy}}(c) \xrightarrow{\text{folded}} P_{\text{redicted}}(c) = R \cdot T_{\text{heavy}}(c)
$$

Solution: Parametric Fit

Detector effects can be quantified by the Response Matrix R:

$$
T_{\text{ruth}} \xrightarrow{\text{folded}} D_{\text{etected}} = R \cdot T_{\text{ruth}}
$$

We can also fold the theoretical distribution:

$$
T_{\text{herry}}(c) \xrightarrow{\text{folded}} P_{\text{reduced}}(c) = R \cdot T_{\text{herry}}(c)
$$

Fitting *P* to *D* solves the problem :

Result

Entanglement Bell's inequality violation

Conclusion

- 1. Semi-leptonic decay is much more sensitive than full leptonic decay.
- 2. There is strong detector effect in reconstructing spin correlation matrix.
- 3. 3% precision for entanglement and 4σ violation for Bell's inequality.

Thank you!