Future Particle Accelerators

Frank Zimmermann International Teacher Programme 2024 15 August 2024

outline

- accelerators
- particle colliders, including luminosity & beam-beam
- next and next-next(-next) generation high-energy machines
 - hadron colliders, both circular and linear electron-positron
 colliders, and muon colliders, along with challenges and merits
 - collider energy efficiency, including energy recovery
 - advanced accelerators incl. accelerators for the dark sector
 - elements of the recent US Snowmass process
 - approximate technical timelines
- **brief outlook** to the far future
- back to next generation

accelerator landscape in the 21st century

worldwide >30,000

particle accelerators:

- <1% for basic research</pre>
- **5% for applied research**
- **35% for medicine**
- **a** ~ 60% in industry

Engines of discovery: 1/3 of all Nobel prizes in physics since 1939 are connected to particle accelerators. [E.Haussecker & A. Chao, Phys. in Persp. 13]

Advanced scientific tools: 18 synchrotron and 8 FEL based light sources in operation in Europe, 1 neutron source in operation and another in construction, more Nobel prizes and strong impact on all scientific domains.

Providers of quality healthcare: >10'000 accelerators for radiotherapy installed in hospitals worldwide, >500 radioisotope production accelerators, 19 particle therapy centers in Europe.

Cutting-edge industrial equipment: analysis and modification of surfaces across many fields (ion implantation, polymer treatment, sterilization, environment, etc.).

Applications of Particle Accelerators

Area	Application	Beam	Accelerator	Beam ener- gy/MeV	Beam current/ mA	Number	
Medical	Cancer therapy	е	linac	4-20	102	>14000	
		р	cyclotron, synchrotron	250	10-6	60	
		С	synchrotron	4800	10-7	10	
	Radioisotope production	p	cyclotron	8-100	1	1600	
Industrial	lon implantation	B, As, P	electrostatic	< 1	2	>11000	
	lon beam analysis	p, He	electrostatic	<5	10-4	300	
	Material processing	е	electrostatic, linac, Rhodatron	≤10	150	7500	
	Sterilisation	е	electrostatic, linac, Rhodatron	≤10	10	3000	
Security	X-ray screening of cargo	e	linac	4-10	?	100?	
	Hydrodynamic testing	e	linear induction	10-20	1000	5	
Synchrotron light sources	Biology, medicine, materials science	e	synchrotron, linac	500-10000		70	
Neutron scattering	Materials science	p	cyclotron, synchrotron, linac	600-1000	2	4	
Energy – fusion	Neutral ion beam heating	d	electrostatic	1	50	10	
	Heavy ion inertial fusion	Pb, Cs	Induction linac	8	1000	Under development	
	Materials studies	d	linac	40	125	Under development	
Energy – fission	Waste burner	р	linac	600-1000	10	Under development	
	Thorium fuel amplifier	р	linac	600-1000	10	Under development	
Energy – bio-fuel	Bio-fuel production	е	electrostatic	5	10	Under development	
Environmental	Water treatment	е	electrostatic	5	10	5	
	Flue gas treatment	е	electrostatic	0.7	50	Under development	

Source: R. Edgecock, A. Faus Golfe, EuCARD-2, 2017 CERN-ACC-2020-0008 <u>http://cds.cern.ch/record/2716155</u>

APPLICATIONS OF PARTICLE ACCELERATORS IN EUROPE

example: super-beam facilities & upgrades

power efficiency challenge

J-PARC : 0.5 MW beams vs ~40 MW site power

examples: high energy particle accelerators

then ~1930

first cyclotron E.O. Lawrence 11 cm diameter 1.1 MeV protons

Large Hadron Collider 9 km diameter, 7 TeV protons

now

G. Hoffstaetter

why colliders ? - energy

colliders were invented (1943) and patented (1953) by Rolf Wideröe

centre-of-mass energy:

colliding two beams against each other can provide much higher centre-ofmass energies than fixed target!

$$E_{\rm c.m.} = 2\sqrt{E_1E_2}$$
 for two high-energy beams of unequal energy

particle colliders constructed and operated

more key collider technologies & concepts

colliders and discoveries

powerful instruments for discovery and precision measurement

Standard Model Particles and forces

still many open questions

Known matter is only 5% of universe!

F. Gianotti

- what is dark matter?
- what is dark energy?
 - why more matter than antimatter?
- what about gravity?

also QCD, quark-gluon plasma, proton spin, etc.

collider figure of merit: luminosity

collider figure of merit: integrated luminosity

Example: hadron collider energy reach with *M* the mass of new particle to be discovered

$$\sigma \propto \frac{1}{E^2} f(M/E) \qquad \qquad f\left(\frac{M}{E}\right) \sim \left(\frac{M}{E}\right)^{-\epsilon}$$

$$\rightarrow M \propto E^{2/3} L_{\text{int}}^{1/6}$$

Lee Teng, APAC 2001 also V.Shiltsev, F.Z., RMP **93**, 015006 (2021)

proposed figure of merit

FoMhadron collider =
$$\frac{E^{2/3}L_{\text{int}}^{1/6}}{\int P_{\text{wall}} dt}$$

another collider figure of merit

collider figure of merit: beam-beam tune shift

(nonlinear) beam-beam force

for pure head-on

at small amplitude similar to effect of defocusing quadrupo

collision
$$\Delta Q_{x,y;\max} = \xi_{x,y} = \frac{2N_b r_0 \beta^*}{4\pi \gamma (2\sigma^{*2})} = \frac{N_b}{\varepsilon_N} \frac{r_0}{4\pi}$$
 for single collision (nominal LHC ~0.0033)

beam-beam tune spread

vertical particles in the transverse tail tune Q_v tune spread ΔQ_v maximum tune footprint acceptable tune spread is limited particles at the center of the bunch by resonances tune $nQ_x + mQ_y = p$ spread ΔQ_x up to resonance order |n|+|m|~13

horizontal tune Q_x

multiple interaction points

beam-beam limit in e⁺e⁻ colliders

luminosity and vertical tune-shift parameter versus beam current for various electron-positron colliders; the tune shift saturates at some current value, above which the luminosity grows linearly

beam-beam limit w strong SR damping

R. Assmann

Modern Colliders

Large Hadron Collider (LHC)

SuperKEKB

world record luminosity of 4.71x10³⁴ cm⁻²s⁻¹, $\beta_y^* = 1.0$ mm routinely, also $\beta_y^* = 0.8$ mm shown – with "virtual" crab-waist collision scheme originally developed for FCC-ee (K. Oide)

near-future collider 1: High-Luminosity LHC

High-Luminosity LHC at CERN: $E_{p-p,cm}$ =14 TeV, *L*=5 or 7.5x10³⁴cm⁻²s⁻¹ levelled goal: increase LHC integrated luminosity x10 to >3 ab⁻¹ around 2040

near-future collider 2: Electron-Ion Collider

Energy Frontier Machines – Energy & Precision

Proposed Higher-Energy Hadron Colliders

SPPC

Snowmass '21

Proposed e⁺e⁻ Higgs & EW Factories

*High-power impulse magnetron sputtering

Eacc (MV/m)

Q0 = 3.5e10 @ 25 MV/m with 2/6 N-doping or midT bake + EP $E_{acc} (MV/m)$ Q0 = 6e10 @ 25 MV/m with 2/6 N-doping + EP + cold EP

FCC-ee RF parameter table Total

Number of 800 MHz cavities: 1088 Total number of cavities: 1456

	F. Peauger,
ttbar2	May 2023

20710120	Z		W		н		ttbar2		10109 2023
	Collider per beam	booster	Collider per beam	booster	Collider 2 beams	booster	Collider 2 beams	Collider 2 beams	booster
RF Frequency [MHz]	400	800	400	800	400	800	400	800	800
RF voltage [MV]	120	140	1050	1050	2100	2100	2100	9200	11300
Eacc [MV/m]	5.93	6.23	10.78	20.76	10.78	20.76	10.78	20.12	20.10
# cell / cav	1	5	2	5	2	5	2	5	5
Vcavity [MV]	2.22	5.83	8.08	19.44	8.08	19.44	8.08	18.85	18.83
#cells	54	120	260	270	520	540	520	2440	3000
# cavities	54	24	130	54	260	108	260	488	600
# CM	<u>13.5</u>	6	32.5	13.5	65	27	<u>65</u>	<u>122</u>	<u>150</u>
T operation [K]	4.5	2	4.5	2	4.5	2	4.5	2	2
dyn losses/cav * [W]	23	0.3	158	4	158	4	158	23	3
stat losses/cav [W]	8	8	8	8	8	8	8	8	8
Qext	6.9E+04	3.2E+05	1.1E+06	8.0E+06	1.1E+06	1.6E+07	5.4E+06	4.2E+06	8.3E+07
Detuning [kHz]	8.620	4.393	0.479	0.136	0.096	0.014	0.007	0.056	0.003
Pcav [kW]	912	205	379	91	379	46	79	163	8
rhob [m]	9937	9937	9937	9937	9937	9937	9937	9937	9936
Energy [GeV]	45.6	45.6	80.0	80.0	120.0	120.0	182.5		182.5
energy loss [MV]	38.49	38.49	364.63	364.63	1845.94	1845.94	9875.14		9876.13
cos phi	0.32	0.27	0.35	0.35	0.88	0.88	0.98	0.86	0.87
Beam current [A]	1.280	0.128	0.135	0.0135	0.0534	0.003	0.010	0.010	0.0005

 \ast heat loads from power coupler and HOM couplers not included

FUTURE

 $20-\Delta nr-23$

CIRCULAR <u>CO</u>LLIDER

one RF system per beam

common RF system for both beams

• Cavity performances: 20 % margin added on Eacc and Q0 between vertical test and operation

Limiting parameters for RF

• In total: 364 cryomodules, 1456 cavities, 25% with Nb/Cu technology, 75% with bulk niobium technology

FCC-ee recent breakthrough

Reverse phase operation (RPO) mode allows increasing RF cavity voltage (Y. Morita et al., SRF, 2009)

I. Karpov,

August '24

- Experimentally verified with high beam loading in KEKB (Y. Morita et al., IPAC, 2010)
- Baseline solution for EIC ESR (e.g., J. Guo et al., IPAC, 2022)

FUTURE

CIRCULAR COLLIDER

We can use the same 2-cell SRF system for all collisions energies, Z, WW, and ZH, at constant cavity voltage and external coupling \rightarrow faster installation, lower cost, much more flexible operation

CIRCULAR FCC-ee collider optics development: 2 options

s (m)

K. Oide, 2023 EPS Rolf Wideroe award winner

P. Raimondi, 2017 EPS Gersh Budker award winner

s (m)

β (m)

Towards the next, next-next and next-next-next generation of accelerators – main themes

- High-field magnets
- SC Radiofrequency systems
- Efficient RF power sources
- e⁺ production
- Gamma Factory
- Monochromatization

- Energy Recovery Linacs
- γγ colliders
- Muon Collider(s)
- Advanced Accelerator
 Concepts
- Sustainability

SC Radiofrequency Systems

0

10

20

Accelerating Gradient (MV/m)

30

Gradient growth SRF linac accelerating gradient achievements and application specifications since 1970 (CERN Courier., Nov. 2020)

More Efficient RF Power Sources

1937: the Varian brothers of Palo Alto invent the klystron

80 years later, another breakthrough in klystron technology

New bunching technologies

Gamma Factory concept

partially stripped heavy-ion beam in LHC (or FCC): resonant scattering of laser photons off ultrarelativistic atomic beam; high-stability laser-light-frequency converter

$$v^{\text{max}} \longrightarrow (4 \gamma_{\text{L}}^2) v_{\text{Laser}}$$

Gamma Factory proof-ofprinciple experiment in the LHC

proposed applications: intense source of e⁺ (10^{16} - 10^{17} /s), π , μ etc doppler laser cooling of high-energy beams HL-LHC w. laser-cooled isocalar ion beams

The LHC as a driver of secondary beams

Schematic transformation of the LHC into a Gamma-Factory-based driver of secondary beams [Witek Krasny].
Gamma Factory driving subcritical nuclear reactor?

LLFP loaded material: Uranium dioxide pellets-fast breeder reactor core at 50 GWd/t Fuel: 235U

	Witek Krasny	
	https://indico.cern	.ch/event/1
-	<u>137276</u>	
	Transmutation in CsI target (g/year)	

	Transmutation in CsI target (g/year)						
LFPs	in photon field	in neutron field	in hybrid field				
¹⁹ I	1.88×10^{3}	1.24×10 ³	3.12×103				
5Cs	3.85×10 ²	-0.70×10^{2}	3.15×10 ²				
7Cs	9.25×10^{2}	-1.07×10^{2}	8.18×10^{2}				

case for a GF based photon driver

×10¹⁸

100

600

y-ray intensity (s

Proton beam J-PARC Photon beam CERN-GF Efficiency ~ 20 % Efficiency = 1.3 % plus targeting specific isotopes and transitions

Monochromatization for $e^+e^- \rightarrow H$ at FCC-ee

► S

Upper Limits / Precision on κ_e

Energy Recovery Linac - Principle

V. Litvinenko, T. Roser, M. Chamizo

Illustration of ERL principle (intentionally simplified): accelerating bunches take energy from SRF linac, while decelerating bunches return energy back.

Energy Recovery Linacs - Historical Proposals 1960s & 70s

Energy Recovery Linacs : recent revival

Electron source

European LDG roadmap

Energy Frontier Collider Applications of Energy Recovery Linacs

Main advances: flat instead of round beams, much smaller (vertical) beam sizes, higher beam current $\rightarrow \sim 10,000 \mathrm{x}$ higher luminosity

3 MHz coll rate 1.5 GHz RF. Q~10¹¹

IR2

ERL prospects & promises

comparison of ERL collider proposals then and now

	Tigner 1965	Amaldi 1976	Gerke – Steffen 1979	Litvinenko-Roser- Chamizo 2019		Telnov 2021	
c.m. energy [GeV]	1-6	300	200	240	600	250	500
average beam current [mA]	120	10	0.3	2.5	0.16	100	100
vertical rms IP beam size [nm]	40,000 (round)	2 <i>,</i> 000 (round)	900 (round)	6	5	6.1	7.4
luminosity [10 ³⁴ cm ⁻² s ⁻¹]	0.0003	0.01	0.004	73	8	90	64

Main differences: flat instead of round beams, much smaller (vertical) beam sizes, higher beam current $\rightarrow \sim 10,000x$ higher luminosity

ERL landscape

W. Kaabi, A. Bogacz, O. Bruning, M. Klein

arXiv:1705.08783

Muon Colliders

~1.6x10⁹ x less SR than e⁺e⁻, no beamstrahlung problem two production schemes proposed

Muon Colliders – Example Challenges

target design for p driven μ collider

plasma target for e^+ driven μ collider

1022

J. Farmer et al., IPAC'22

D. Schulte, IPAC'22

yy colliders

Advanced Accelerators: Plasma

R. Assmann

A plasma cell compared with the superconducting accelerator FLASH (credit DESY) R. Assmann, E. Gschwendtne

R. Assmann, E. Gschwendtner, R. Ischebeck, LDG Draft

Advanced Accelerator "Demonstrator" EuPRAXIA

Plasma Accelerator Challenge: Positron Acceleration

"ballistic injection": a ring-shaped laser beam and a coaxially propagating Gaussian laser beam are employed to create donut and center bubbles in the plasma, resp.

FIG. 1. The concept of the positron ballistic injection scheme. The blue and green colors are contour surfaces of electron densities of donut and center bubbles, respectively. The red color represents injected positrons. The x-y and x-z planes are transverse slices of the density distribution and the longitudinal electric field E_x . The red curve in the x-y plane is the trajectory_ of an injected positron (corresponding to the projection of red balls in the 3D model). The leading oscillating colors (amber and grey) denote the laser beams in the x-z plane. The y-z plane is the projection of electron density (blue) and injected positron density (red).

PHYSICAL REVIEW ACCELERATORS AND BEAMS 23, 091301 (2020)

New injection and acceleration scheme of positrons in the laser-plasma bubble regime

Z. Y. Xu,¹ C. F. Xiao,¹ H. Y. Lu⁽⁵⁾,^{1,2,3,*} R. H. Hu,^{1,†} J. Q. Yu,^{1,‡} Z. Gong⁽⁶⁾,¹ Y. R. Shou,¹ J. X. Liu,¹ C. Z. Xie⁽⁶⁾,¹ S. Y. Chen,¹ H. G. Lu,¹ T. Q. Xu,¹ R. X. Li,⁴ N. Hafz⁽⁶⁾,⁵ S. Li,⁵ Z. Najmudin,⁶ P. P. Rajeev,⁷ D. Neely,⁷ and X. Q. Yan^{1,3}

Z.Y. Xu

Advanced Accelerator Types

Required parameters for a linear collider with advanced high gradient acceleration [R. Assmann]. Three published parameter cases are listed. This table is taken from the LDG report [N. Mounet (ed.), "European Strategy for Particle Physics - Accelerator R&D Roadmap", arXiv:2201.07895 CERN-2022-001]

Parameter	Unit	PWFA	LWFA	DLA
Bunch charge	nC	1.6	0.64	4.8×10^{-6}
Number of bunches per train	-	1	1	159
Repetition rate of train	kHz	15	15	20,000
Convoluted normalized emittance $(\gamma \sqrt{\epsilon_h \epsilon_v})$	nm-rad	592	100	0.1
Beam power at 5 GeV	kW	120	48	76
Beam power at 190 GeV	kW	4,560	1,824	2,900
Beam power at 1 TeV	kW	24,000	9,600	15,264
Relative energy spread	%		≤0.35	
Polarization	%	80 (for e ⁻)		
Efficiency wall-plug to beam (includes drivers)	les drivers) % ≥ 10			
Luminosity regime (simple scaled calculation)	$10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	1.1	1.0	1.9

Accelerators for Indirect Dark Sector Searches

Feynman diagram for coupling of Standard Model particles & photons to corresponding Dark Sector objects A' and χ , with coupling strength ϵ .

<u>reference</u> <u>experiments:</u>

- NA64 experiment at CERN [4]
- proposed LDMX based on the LCLS-II linac at SLAC [3] – goal: 1.6× 10¹⁵ 8-GeV electrons on target over 4 years

Concept of indirect DM search by missing momentum with spectrometer and trackers upstream and calorimeter downstream of a thin target, based on Refs. [1–3]. *A'* indicates a particle carrying missing energy.

Table 1: Three parameter sets for a linear collider with advanced high gradient acceleration [2, 6, 7].

Parameter [unit]	PWFA	LWA	DLA
Bunch charge [nC]	1.6	0.64	5×10^{-6}
No. bunches / train	1	1	159
Train rep. rate [kHz]	15	15	20000
Norm. emit. ($\gamma \varepsilon$) [nm]	592	100	0.1
Beam power (5 GeV) [kW]	120	48	76
Relative energy spread [%]		≤ 0.35	

perfect match with indirect searches for dark sector !

Principle of Dielectric Laser Acceleration (DLA)

The DLA structure is illuminated by laser light from the top. Green arrows indicate the positive force of the laser's electric field that can accelerate electrons.

Example DLA structures

R. Dadashi (2022/23)

K.J. Leedle et al.,Opt. Lett. 43,2181-2184 (2018)

U. Niedermayer et al., Phys Rev Accel. Beams 20, 111302 (2017)

Minimum DLA (MDLA)

target & detector

Deflection-Assisted DLA (DADLA)

A pair of **orthogonal dielectric laser deflectors** installed at the exit of the DLA (DADLA setup) is sending each electron in a train of \sim 160 onto **separate segments of the detector**, thereby overcoming the time resolution limit and allowing bunch spacing of <10 ps within a train

DLA structure as part of a laser oscillator (OEDLA); e⁻ pass rightwards through the structure; laser pulse circulates at 100 GHz (path ~3 mm).

DLA scheme	MDLA	DADLA	OEDLA
e ⁻ energy [GeV]	10	10	10
Gradient [GV/m]	1	1	1
Act. length [m]	10	10	10
Rep. rate [GHz]	0.06	0.06	100
Pulse length [ps]	0.1	1	0.1
Single e's / pulse	1	160	1
Av. current [pA]	1	150	
Time sep. [ns]	17	17 btw. pulses (7 fs in pulse)	0.01
Special features		DL defl., segm. det.	DLA in laser osc.
$e^{-}/yr (2 \times 10^7 s)$	6×10^{14}	$\sim 10^{17}$	$\sim 10^{18}$
Energy/yr [GWh]	1	10	~ 2

Table 2: Three options for DLA based dark sector searches.

LDMX: 4x10¹⁴ e⁻/yr

Extended LDMX Sensitivity

The interaction strength between dark matter and Standard Model matter versus the possible mass of the dark matter particles. The black lines show the interaction strength compatible with the dark matter abundance in the universe, and for the types of dark matter particles that are not excluded from the analysis of the Cosmic Microwave Background. The grey area shows the already excluded region. The colored lines show the reach of LDMX. The plot is taken from T. Akesson et al., Dark Sector Physics with a Primary Electron Beam Facility at CERN, tech. rep., CERN-SPSC-2018-023, 2018, URL: http://cds.cern.ch/record/2640784

Two snapshots from iFAST WP5.2 topical dark-sector accelerator meeting at CERN, 31 October 2022

Rasmus Ischebeck

Raziyeh Dadashi, Rasmus Ischebeck, Jeremy Jacobsson, Richard Jacobsson, Massimiliano Ferro-Luzzi, Witek Krasny, Frank Zimmermann

Enrico Fermi's space-based world machine

From E. Fermi, preparatory notes for a talk on "What can we learn with High Energy Accelerators ?" given to the American Physical Society, NY, Jan. 29th 1954

For these reasons....clamoring for higher and higher.... Slide 1 - MeV - M& versus time. Extrapolating to 1994...5 hi 9 Mev or hiest cosmic...170 B&....preliminary design....8000 km, 20000 gauss Slide 2 - 5 hi 15 eV machine.

Whay we can learn impossible to guess....main element surprise....some things look for but see others.....Experients on pions....sharpening knowledge....spinsters and units and the second sec

Fermi's extrapolation to year 1994: $E_{beam} \sim 5 \times 10^3 \text{ TeV}, 2 \text{ T magnets} \rightarrow \text{R=8000 km}$ Note: fixed target accelerator $\rightarrow Js \sim 3 \text{ TeV}$ Cost : 170 B\$

ultimate limit on electromagnetic acceleration Schwinger critical fields $E_{cr} \approx 10^{12}$ MV/m, $B_{cr} = 4.4 \times 10^{9}$ T Planck scale: 10^{28} eV

"not an inconceivable task for an advanced technological society" P. Chen, R. Noble, SLAC-PUB-7402, April 1998

1.0x10¹⁰ m

0.8x10¹⁰ m

circular & linear Planck-scale colliders

~1/10th for distance earth-sun

stepping stone towards Planck scale collider ?!

Very large hadron collider on the Moon (CCM), $C \sim 11$ Mm, $E_{c.m.} \sim 14$ PeV (1000x LHC's), $6x10^5$ dipoles with 20 T field, either ReBCO, requiring ~7-13 k tons rare-earth elements, or IBS, requiring ~a million tons of IBS. Many of the raw materials required to construct machine, injector complex, detectors, and facilities can potentially be sourced directly on the Moon. 11000-km tunnel a few 10 to 100 m under lunar surface to avoid lunary day-night temperature variations, cosmic radiation damage, and meteoroid strikes. Dyson band or belt to continuously collect sun power. Required: <0.1% sun power incident on Moon surface.

tentative CCM parameters & layout

Table 1. Tentative proton-proton parameters for CCM, compared with FCC-hh and HL-LHC [48].

Parameter	CCM	FCC-hh	HL-LHC
Maximum beam energy Ebeam (TeV)	7000	50	7
Circumference C (km)	11 000	97.8	26.7
Arc dipole magnet field B _{dip} (T)	20	16	8.3
Beta function at IP $\beta_{x,r}^{*}(m)$	0.5	0.3	0.15
Transverse normalized rms emittance ε_n (μ m)	0.2	2.2	2.5
Rms interaction-point beam size (µm)	0.12	3.5	7
Beam current (A)	0.5	0.5	1.12
Bunches per beam nb	1200 000	10 400	2760
Bunch spacing (ns)	25	25	25
Bunch population N _b [10 ¹¹]	1.0	1.0	2.2
Energy loss per turn U_0 (MeV)	1.7×10^{7}	4.67	0.007
Synchrotron radiation power P _{SR} (MW)	8.5×10^{6}	4.8	0.014
Critical photon energy Ecr (keV)	105 000	4.3	0.044
Transverse emittance damping time τ_{xy} (h)	0.004	1.0	25.8
Beam-beam parameter per IP, ξ [10 ⁻³]	60	5.4	8.6
Luminosity per IP L [10 ³⁴ cm ⁻² s ⁻¹]	$\sim \! 20000$	~ 30	5 (leveled)
Number of events per bunch crossing (pile-up)	$\sim 10^{6}$	~ 1000	135
Maximum integrated luminosity per experiment [ab ⁻¹ /y]	~2000	1.0	0.35

Table 2. Parameters for a possible CCM injector chain.						
Synchrotron	Circumference (km)	Max. dipole field (T)	Cycle time (s)	Extr./inj. energy		
Fop-up booster Pre-booster First synchrotron	11 000 2750 550	20 4 1	50 12.5 2.5 CW	7 PeV/350 TeV 350 TeV/17.5 TeV 17.5 TeV/0.9 TeV 0.8 TeV/0.0		
superconducting linac	50 (length)	—	Cw	0.9 lev/~0		

J. Beacham, F. Zimmermann, 2022 *New J. Phys.,* <u>https://doi.org/10.1088/1367-2630</u>

a timely consideration ?!

Isro plans to explore dark side of the Moon with Japan, venture towards Venus

India Today Web Desk 🎐 New Delhi, UPDATED: Nov 7, 2022 11:05 IST

back to the next generation

locion naram	atarc		NICA	EIC	FFC-hh	SPPC	$\mu\mu$ collider
iesign parann	elers	Species	ion-ion, pp	ep, e-ion	pp	pp	$\mu^+\mu^-$
of future hadı	ronic &	Beam energy $E_{\rm b}$ (TeV)	$10^{-3} \cdot (4.5/u, 13)$	0.01(e), 0.275(p)	40-58	62.5	0.063, 5
		Circumference C (km)	0.503	3.834	90.66	100	0.3, 10
nuon collider	⁻ S	Interaction regions	2	1(2)	4	2	1, 2
rom Particle Data	Group	Est. integr. luminosity per exp. (ab ⁻¹ /year)	$10^{-8,-3}$ (<i>ii</i> , <i>pp</i>)	0.1	0.2 - 1.0	0.6	0.001, 2.0
	2022	Peak luminosity \mathcal{L} (10 ³⁴ cm ⁻² s ⁻¹)	$10^{-7,-2}$ (<i>ii</i> , <i>pp</i>)	1.05	5 - 30	4.3	0.008, 20
Jraft update July	2023	Rep.rate (Hz, f_{rev} for rings)	$5.9 \cdot 10^{5}$	$7.8 \cdot 10^4$	3307	3000	15, 5
		Time between collisions (μs)	0.077	0.009	0.025	0.025	1, 33
		Energy spread (rms, 10^{-3})	1.6 (Au)	0.6~(e),~0.7~(p)	0.1	0.1	0.04, 1
		Bunch length σ_z (rms, mm)	600	7(e), 60(p)	80	60	63, 1.5
		IP beam size σ^* (H/V rms, μ m)	360	95/8.5	6.7-3.5 (init.))3.0 (init.)	75, 0.9
		Emittance ε_n (H/V rms, mm mrad)) 1.1	$\frac{11.3/1.0 \ (e)}{9.2/1.6 \ (p)}$	2.2 (init.)	1.2 (init.)	200, 25
		Beta function at IP $\beta^*~({\rm H/V~cm})$	60	$45/5.6 (e), \\ 80/7.2 (p)$	110-30	50	1.7, 0.15
		Beam-beam param. ξ (10 ⁻³ H/V)	25	72/100 (e), 12 (p)	5 - 15	15	22, 78
		RF frequency $f_{\rm RF}$ (MHz)	13/39	591	400	400/200	805/1300
		Particles per bunch N (10 ¹⁰)	0.23	17.2(e), 6.9(p)	10	4	400, 180
		Bunches per beam $n_{\rm b}$	22	1160	9648	10082	1
		Average beam current $I_{\rm b}$ (mA)	480	2500(e),1000(p)	500	190	640, 9 (peak)
		Injection energy (GeV)	1-3.8	on $E_{\rm b}$ (e), 25 (p)	≥ 1000	3200	on $E_{\rm b}$
		Peak magnetic field B (T)	1.8	0.248 (e), 3.80 (p)	14-20	20	10
		Polarization (%)	0(i), >50(p)	> 70(e), > 70(p)	0	0	0
V Shiltsov		SR power loss/beam (MW)	10^{-6}	$10(e), < 10^{-6}(p)$	2.0 - 8.5	2.2	$10^{-3}, 0.16$
		Key technology	electron and	strong hadron	Nb ₃ Sn/HTS	HTS	muon prod.
F. Zimmermann		Rey technology	stoch. cooling	cooling	magnets	magnets	& cooling

design parameters of future e⁺e⁻ colliders

from Particle Data Group Draft update July 2023

V. Shiltsev, F. Zimmermann

	FCC-ee	CEPC	ILC	CLIC
Species	e^+e^-	e^+e^-	e^+e^-	e^+e^-
Beam energy E_b (GeV)	46, 120, 183	46, 120, 180	125, 250	190, 1500
Circumference or length (km)	90.66	100	20.5, 31	11, 50
Interaction regions	4	2	1	1
Est. integrated luminosity per experiment (ab ⁻¹ /year)	17, 0.6, 0.15	15, 0.65, 0.07	0.2, 0.3	0.1, 0.6
Peak lumi. \mathcal{L}/IP (10 ³⁴ cm ⁻² s ⁻¹)	140, 5.0, 1.25	115, 5.0, 0.5	1.4, 1.8	1.5, 6
Rep.rate (Hz, f_{rev} for rings)	3307	3000	5	50
Polarization (%)	$\geq 10, 0, 0$	5-10, 0, 0	$80/30 (e^{-}/e^{+})$	$80/0 (e^{-}/e^{+})$
Time between collisions (μs)	0.025, 0.3, 2.5	0.025, 0.68, 2.6	0.55	0.0005
Energy spread (rms, 10^{-3})	1.09,1.43,1.92	1.3, 1.7, 2.0	e^{-} : 1.9, 1.2 e^{+} : 1.5, 0.7	3.5
Bunch length σ_z (rms, mm)	15.5, 4.7, 2.2	8.7, 3.9, 2.9	0.3	0.07, 0.044
ID have size at (man sum)	H: 9, 13, 40	H: 5.9, 14, 38	H: 0.52, 0.47	H: 0.15, 0.04
IP beam size σ^{-} (rms, μ m)	V: 0.04, 0.04, 0.05	V: 0.04, 0.04, 0.11	V: 0.008, 0.006	V: 0.003, 0.001
Emittance c (rms (m)	H: 63, 167, 568	H: 24, 150, 493	H: 5, 10	H: 0.95, 0.66
Education ε_n (rms, μ m)	V: 0.17, 0.3, 0.6	V: 0.12, 0.3, 1.7	V: 0.035, 0.035	V: 0.03, 0.02
2* at intermedian point (and)	H: 11, 24, 100	H: 13, 33, 104	H: 1.3, 1.1	H: 0.8, 0.69
ρ at interaction point (cm)	V: 0.07, 0.1, 0.16	V: 0.09, 0.1, 0.27	V: 0.041, 0.048	V: 0.01, 0.0068
Full crossing angle θ_c (mrad)	30	33	14	20
Crossing scheme	crab waist	crab waist	crab crossing	crab crossing
Piwinski angle $\Phi = \sigma_z \theta_c / (2\sigma_x^*)$	26, 5.4, 0.8	24, 4.8, 1.3	0	0
Beam-beam param. ξ_y (10 ⁻³)	97, 88, 134	110, 127, 100	n/a	n/a
Disruption parameter D_y	1.3, 0.9, 2.0	0.6, 1.3, 0.8	35, 25	13, 8
Average Upsilon Υ (10 ⁻²)	0.01, 0.04, 0.06	0.02, 0.04, 0.05	3, 6	17, 500
RF frequency f_{RF} (MHz)	400, 400, 800	650	1300	11994
Particles per bunch N (10 ¹⁰)	21, 12, 16	14, 13, 20	2	0.52, 0.37
Bunches per beam n_b	11200, 440, 60	11951, 249, 35	1312 (pulse)	352, 312 (trains at 50 Hz)
Average beam current I _b (mA)	1270, 27, 4.9	804, 16.7, 3.3	0.021	0.014, 0.009
Injection energy (GeV)	on E_b (top off)	on E_b (top off)	5.0 (linac)	9.0 (linac)
RF gradient G (MV/m)	5.7, 10.6, 20.1	17.4, 24.9, 27.6	31.5	72, 100
Total SR power loss (MW)	100	60	n/a	n/a
Total beam power (MW)	n/a	n/a	5.3, 10.5	5.6, 28
Key technology			high grad. SC RI	F two-beam accel.
From Snowmass ITF report*

	CME (TeV)	Lumi per IP (10^34)	Years, pre- project R&D	Years to 1 st physics	Cost range (2021 B\$)	Electric Power (MW)
FCCee-0.24	0.24	8.5	0-2	13-18	12-18	280
ILC-0.25	0.25	2.7	0-2	<12	7-12	140
CLIC-0.38	0.38	2.3	0-2	13-18	7-12	110
HELEN-0.25	0.25	1.4	5-10	13-18	7-12	110
CCC-0.25	0.25	1.3	3-5	13-18	7-12	150
MC-Higgs	0.13	0.01	>10	19-24	4-7	~200
CLIC-3	3	5.9	3-5	19-24	18-30	~550
ILC-3	3	6.1	5-10	19-24	18-30	~400
MC-3	3	2.3	>10	19-24	7-12	~230
MC-FNAL	6-10	20	>10	19-24	12-18	O(300)
MC-IMCC	10-14	20	>10	>25	12-18	O(300)
FCChh-100	100	30	>10	>25	30-50	~560

*CEPC missing

Energy efficiency: Higgs factories

Total luminosity per electrical power. (Nature Physics vol. 16, 402, 2020)

Energy Consumption & Carbon Footprint per Higgs

P. Janot and A. Blondel, *The carbon footprint* of proposed e^+e^- Higgs factories, arXiv 2208.10466 (2022); The European Physical Journal Plus volume 137. Article number: 1122 (2022)https://link.springer.com/content/pdf/10.114 0/epjp/s13360-022-03319-w.pdf also see https://www.nature.com/articles/d41586-022-03551-5

Further sustainability considerations

Higher magnet temperature helps

1.9 K Nb-Ti or Nb₃Sn magnets \rightarrow 4.5 K/20 K Nb₃Sn/HTS magnets

Future: fluctuating energy sources

Simulation for Germany 2050

full collider operation at times of high grid production reduced operation or standby modes with fast L recovery otherwise

varying #bunches in circular colliders

Future e⁺e⁻ Collider Positron Requirements

Collider	Status	Colliding	Colliding	Injection	Injection	Injection	Replacement	Total Inj	Total Inj
		e+/bunch	bunches	e+ bunches	pulses/sec	e+ bunches	e+ fraction	e+/pulse	e+/sec
		(x10^10)	to fill	per pulse		per second	per second	(x10^10)	(x10^12)
LEP	Past	43.00	8	1	100	100	Ramped	0.12	0.12
SLC	Past	5.00	120	1	120	120	1.000000	5.00	6.00
PEP-II	Past	8.50	1732	1	30	30	0.001019	0.50	0.15
SuperKEKB	Ongoing	4.10	2151	2	50	100	0.002268	0.20	0.20
FCCee	Designed	20.20	12000	2	200	400	0.002475	1.50	6.00
CEPC	Designed	14.00	19918	2	100	200	0.001348	1.88	3.76
ILC	Designed	2.00	6560	1312	5	6560	1.000000	2.00	131.20
ILC (extend)	Designed	2.00	26250	2625	10	26250	1.000000	2.00	525.00
CLIC	Designed	0.57	17600	352	50	17600	1.000000	0.57	100.32
C3	Concept	0.63	15960	133	120	15960	1.000000	0.63	100.55
CERC	Concept	8.10	800	8	100	800	0.001235	1.00E-02	0.08
ERLC	Concept	0.50	53000	53	100	5300	0.000200	1.00E-03	0.05
ReLiC	Concept	1.00	22000	22	100	2200	0.000100	1.00E-03	0.02
PWFA-LC	Initial	1.00	10000	1	10000	10000	1.000000	1.00	100.00
PWFA-LC (ext)	Initial	1.00	20000	1	20000	20000	1.000000	1.00	200.00
LWFA-LC	Initial	0.12	47000	1	47000	47000	1.000000	0.12	56.40
SWFA-LC	Initial	0.31	23100	231	100	23100	1.000000	0.31	71.61

- ?

Positron Production

Challenging demands

Innovative high-yield source

P³: PSI e⁺ production experiment with HTS solenoid at SwissFEL planned for 2024/25

Snowmass'21 (2022) – maturity ranking

arXiv:2209.05827

A. Faus-Golfe et al.

Collider	Design Maturity	R&D Maturity	
ILC-250	10	9-10	
ILC-500	10	9-10	
ILC-1000	6-7	6-7	
CLIC-380	9	10	
CLIC-1500	8	9-10	
CLIC-3000	8	8-9	
C3-250	3	3	
C3-550	3	2	
C3-Nb ₃ Sn	1	0	
HELEN	3 (ML)	2 (SRF)	
ReLiC	3	4	
ERLC	3	4	
ΧСС γγ	2	2	
HE&HL γγ	0	0	

Collider	Design Maturity	R&D Maturity	
FCC-ee	9	9	
CEPC	9	9	
CERC	3	4	
LEP3	3	8	
EPCCF	3	8	
MC-HF	3	2	

Design Maturity	Maturity Criteria #1 (Design Maturity)	Maturity Criteria #2 (R&D Maturity)
o	No end-to-end design concept prepared	Concept proposed, but no systematic design requirements and/or parameters available.
1	No end-to-end design concept prepared	Concept proposed, proof-of-principle R&D underway
2	End-to-end preliminary design concept under development	Ongoing R&D to address fundamental physics/technical issues.
3	End-to-end preliminary design concept available	Sub-system operating parameters established based on preliminary design concepts for novel/critical sub-systems
4	End-to-end integrated design concept under development	Preliminary design concepts with operating parameters established for all sub-systems. Sub-system design R&D underway.
5	End-to-end integrated design concept available. Enables end-to- end performance evaluation.	Sub-system preliminary designs exist. Sub-system design R&D continues.
6	End-to-end performance evaluation complete. Reference (pre- CDR level) Design Report under development.	Sub-system performance risk assessment complete.
7	Reference Design available. Sub-system parameters and high potential alternatives documented.	Sub-system detailed design and performance R&D for highest risk sub-systems underway.
8	Conceptupal Design Report in preparation.	Sub-system specifications with validated operating parameters established. High risk sub-system R&D underway.
9	Conceptual Design Report and detailed cost estimate avaialable.	High risk sub-system R&D ongoing. Risk mitigation strategy for sub-system performance established.
10	Ready for Construction Proposal. Detailed Engineering Design being developed.	Performance Optimization R&D underway.

FCC Feasibility Study 2021-2025

Work supported by the **European Commission** under the **HORIZON 2020 projects EuroCirCol**, grant agreement 654305; **EASITrain**, grant agreement no. 764879; **iFAST**, grant agreement 101004730, **FCCIS**, grant agreement 951754; **E-JADE**, contract no. 645479; **EAJADE**, contract number 101086276; and by the Swiss **CHART** program

onot

Horizon 2020 European Union funding for Research & Innovation

Regional implementation activities

CA du Pavs

de Gex

- **Meetings with municipalities concerned** in France (31) and Switzerland (10)
- **PA Ferney Voltaire** (FR) experiment site
- PB Présinge/Choulex (CH) technical site
- PD Nangy (FR) experiment site

FUTURE

CIRCULAR COLLIDER

- PF Roche sur Foron/Etaux (FR) technical site
- PG Charvonnex/Groisy (FR) experiment site
- **PH Cercier** (FR) technical site
- PJ Vulbens/Dingy en Vuache (FR) experiment site
- PL Challex (FR) technical site

Detailed work with municipalities and host states CC Uses et Rhône

- identify land plots for surface sites
- understand specific aspects for design
- identify opportunities (waste heat, tec.)
- reserve land plots until project decision

Points de surface PA31-4.0

Design PA31-4.0 CA Annemasse-les Voiro Applomération

CA du Grand Annec CA du Pavs de Ge

CC Arve et Salève

CC du Genevois CC du Pays Rochois CC du Pays de Cruseille

Réunion individuelle plannifié

Rencontré en réunior

individuelle

tatut des rencontre Rencontré en réunior collective

CC Faucigny-Glières CC Fier et Usses CC Usses et Rhône CC des Quatre Rivière

Expected time line till start of construction

FUTURE

CIRCULAR

A few conclusions

- Great progress in SC RF and in high-field magnets
- Accelerators & colliders getting ever more efficient
- Synergies with other applications and other fields
- Numerous innovative concepts and challenges for the future
- Advanced DLAs for indirect dark sector searches ?
- Sustainability has become important design criterion
- Several promising paths forward circular and/or linear
- FCC-ee is CERN's "plan A" and a wonderful one

"A circle is a round straight line with a hole in the middle"- Mark Twain

surely great times ahead !

