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Before we start

« Go to my binder: https://binderhub.ssl-hep.org/v2/gh/rafaellopesdesa/hsfindia-
generative/HEADgpu_false

* Go to the reweighting exercise and run the pip command.
 Let it run while | talk about what we will do...

- Reweighting MC simulation to data using a NN

Rewsighting MC simulations to data is 2 common task used to improve the modelling. The most commeon practice is to reweight a singl

used to perform the reweighting task by considering multiple variables together, which improves the modelling across multiple variable:

Run this cell and

, Many thanks to Michele Faucci Giannelli, Marilena Bandieramonte and Martina Javurkova
let’s talk about

physics Wh||e |t 'pip install -U tensorflow
. 'pip install -U tensorflow-probability
|n5ta”5 'pip install -U matplotlib

'pip install -U scipy
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Analysis and simulation

The goal of LHC analysis is to compare the data to a probability model for different
hypothesis, usually Standard Model (SM) vs New Physics (NP)

p(xdata|H1) and p(xdata|HO)
Building the p(x|H) models is really complicated.

In most cases p(x|H) are approximated by histograms where the number of events
(I will call it v) in each bin comes from simulation

— Counting MC (simulation) events.
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How do we count MC events?
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In practice, MC events have weights

bk bin I
Vi g Zbigi__{ Wi
p(leO) — bkg —
vV ZbkgWi

bk 51 bin I bin Iy
& Tv & Zbkg w; + 251g Wi

bkg + VSlg Zbkg Wi + Zsig Wi

p(x|H;) =
But what is w; again? In simulation, the probability of a given
event is given by the differential cross section

do
dz

=~ W;

Sometimes, we can “unweight” events, but not always...
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Negative weights

Cross sections are all positive. So why do we have negative weights?

Perturbation theory, parton shower, and interference

Higher order terms have divergencies

1

~x —
2(pa 'pb) a

A common way to remove these divergencesis to
introduce negative weights.

In addition, the same kind of emission can be
introduced by parton showers. Negative weights are
a common way to remove double counting.
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Processes with interference can be funny...

& Kf kv z ¢ z
A
g Z g Z

This is positive, but the interference term can be
positive or negative

* _
g Kf Kv Z g Z
ke |
H*
8 Z 8 yA
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So, what's the idea?
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Simulation

Full simulation

e Common software framework
(usually Geant4, but others exist)

* Experiments provide additional code

(digitization, reconstruction, ...)
* Explicit modeling of detector

geometry, materials, interactionsw/

particles
Add thousands of additional
variables. Sequential sampling

zi ~ p(zi|zj<; ) and x ~ p(x|z;)

Fast simulation

* Usually experiment-specific
framework

* Explicit modeling of detector
geometry

* Add approximations:analytical
shower shapes, truth-associated
track reconstruction, ...
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Parametrized simulation

Does not describe the detector
Replaces entire chain (“end-to-end”)
Can be done with analytical function
or machine learning methods

x ~ p(x|z)




Simulation landscape

How can we use ML with simulation?

Our need

« Augment the full simulation / t
FullSim

» Improve the MC weights with data Geantd

« Calibrate your simulation Machine
Learning

Accuracy

* Replace (part of) full simulation

FastSim

* Create an “end-to-end” parametrized simulation

Parameterized
simulation

Goals:

Speed

1. Increase speed while preserving accuracy
2. Preserve speed while increasing accuracy
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Augment full simulation

» Usually deterministic.

Classification based

Uses a classification loss, like the one you tried in
Gordon’s lectures

1
L= _NE w;ly; logs; + (1 — y;) log(1 — ;)]
7

The minimum of this loss function is achieved at:

p1 (x)vq
s(x) =
po(X)vo + Py (X)v4
_ pi(x) _ s
If vg = v4 (balanced)po(x) =

Regression based

Uses a regression loss, for instance MSE (there are
others):

Creates a calibration function s; (x;)

But it only calibratesthe average (conditional on x;),
not full distributions.
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Classification-based reweighting

- Relies on finding a control region (CR). SRypc = %‘ % SRair
« Reweight between CR and SR need to o
be validated carefully.
CRdata SRdata

 Try the activity in binder!

* https://binderhub.ssl-hep.org/v2/gh/rafaellopesdesa/hsfindia- CR.. SR..
generative/HEADgpu_false sim sim

— 5(x|69, 61)
Xe ~ p(x|6 =060 =0.0)
Xe ~ p(x|60 =06, =0.6)
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Intermezzo

* Now let’s do the second part...

* Go to the generative directory in binder and run the pip cell (it assumes you are
using the same session as the reweight one)

'pip install -U torch m ™ S&HF R

Generative models exercise

Introduction
This exercise is based on a normalizing flow exercise designed by T.Quadfasel, M.Semmerhalder and S.Diefenbacher, https://github.com/uhh-pd-ml/flow-exercise
Broadly speaking the exercise is organized into two parts.

¢ The first part takes a look at examples of some of the introduced generative models using the Two Moons data set

* The second part focuses on normalizing flows and how to build them using the nFlows package
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Optimal transport

Moving points instead of reweighting
histograms

“Optimal” : Transport minimize some cost
(L?)
* Order preserving transformation between
Pand Q

Easily scalable to higher dimensions

Correct higher order correlation _ Data
Ix-TOa) 2
x2)\2

Carrect higher order correlation

MC Data

xe T
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1D optimal transport

p=2ie.clx,y) = |.7c—y|2

For 1-dimensional distributions:

The optimal transport solution performs
quantile-matching (works for all convex
cost functions!)

T(x) = 0~ '(P(x))

q(y)
& Cumulative distributions s
of p(x), q(y): Yo =1(%)

Generically: F(x) = I dx'f(x") O(yp) = P(xo)g
0 .
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ML optimal transport

ldea: Why not move the simulation instead of
reweighting it?
* Optimal Transport
« Continuous calibration without histograms
« Easily scales to higher dimensions and cheap
* Integral of sample unchanged

p(x q0)
g(x) f o)
y
Price to -/ Price to
depopulate at x Transport details populate aty
(“pick up”) hidden! (“deliver”)
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7 = arg min [dx p(x) c(x, T(x))
T

dx

7 =arg min[dx dy n(x,y) c(x,y)

T

[dy n(x,y) = p(x) de n(x,y)=q(y)

f.&=argm aXde q(y) f)+

fg

g(x) +f(y) < clx.y) + dep(x)g(x)
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Optimal transport

 Very recently, a solution on how to train multi-dimensional OT with ML has been
found.

* Brand new area of ML that is just now finding applications

Data v —> [ > L(f,9) «—
Sim. Data A A
L) ! '
[
¢¢‘ *+¢ [ :
B ;
MC = —)_ U e
Callbrat_ed L(gp,y) = max,, Z + 5 V0,00 0") = f(Vegy(x;8'),8") with the T =V.g(x;6"
sim. '

T(x)

Calibration of simulation
(e.g. Monte Carlo prediction
against data side bands)

[2107.08648]

p(xﬁim)

q (xdala)
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Generative methods

« Generative models (“replace”):

« Usually stochastic
« Generative Adversarial Networks (GANS)

 Variational Autoencoders(VAES) r N \
« Normalizing Flows (NFs) | Generator 4’[ AW, J
g o S
(&)
—»| Discriminator '_/
\ ' / h / D Data
arXiv:2203.08806 (] Noise

Machine learning: simulation and data
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Generative Adversarial Network

» Generator Network G(z) = x
 Maps noise z to x

12/21/2023

Noise

Z

—| Generator

Output

Machine learning: simulation and data
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Generative Adversarial Network

» Generator Network G(z) = x
 Maps noise z to x

Real Data Output
 Discriminator D(G(z)) and D(x)
» Learns difference between real Noise
and fake T 2z |—| Generator ||x/ L
\ Real
« D(G(z2)) is differentiable function | Discr. :
measuring performance Bl Fake

« Use D(G(2)) as loss to update G
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Generative Adversarial Network

BCEloss = nn.BCELoss()
for ep in range{epochs):
for i_batch in range(max_batches):
# select the current batch from the dataset
¥x_real = X _moons[i_batch * batch_size : (i _batch + 1) * batch_size]
x_real = torch.tensor(x_real, device=device).float()

DiscriminatorOpt.zero_grad()

with torch.no_grad():
noise = torch.randn({({batch_size, 8), device=device).float()
x_fake = Generatorhlet(noise)

y_real = torch.ones((batch_size, 1), device=device)
y_fake = torch.zeros((batch_size, 1), device=device)
y = torch.cat{(y_real, y_fake), @)

x = torch.cat{(x_real, x_fake), @)

Discriminator_loss = BCEloss({DiscriminatorNet(x), y)
Discriminator_loss = Discriminator_loss.mean()
Discriminator loss.backward()
DiscriminatorOpt.step()

GeneratorOpt.zero_grad()

noise = torch.randn((batch_size, 8), device=device).float()
x_fake = GeneratorNet({noise)

Generator loss = BCEloss{DiscriminatorNet(x_fake), y real)
Generator loss = Generator_ loss.mean()

Generator_loss.backward()
GeneratorOpt.step()
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Generative Adversarial Network

Upsides Downsides

* [ntuitive _approach 3  Difficult to train

* Easy to introduce additional » Gen. and disc. needs to be balanced
constraints « Can fail to converge

« Well explored with several * Prone to mode collapse

improvements (W GANSs,
normalizations)
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Towers in Sampling 3
A@xAn =0.0245% 0.05

photons

i9ger
er

= 0.0982

-

Square towers in
Sampling 2
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FastCaloGAN V2

Different GAN for different type of particles
and for different eta slices.

Prediction of deposit of energy in “voxels”
which allow HITS reconstruction.

Conditional WGAN-GP

Generator

Latent Output

Space (50)

oncatenate

Discriminator
Output

Dense
NVoxel
Linear
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How do we use this in a fast MC?

12/21/2023

Hadrons

Inner
Detector

Muon

Calorimeters
Spectrometer

FastCaloSimv2

FastCalo § FastCalo § FastCalo Muon
Sim V2 GAN Sim V2 Punchthrough

E,,, < (8—16) GeV (8—-16) GeV < E i > (256 — 512) GeV +Geant4
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Variational AutoEncoders (VAE)

« Encoding function E(x) = z map high
dimensional data X to low dimensional
latent space Z

. . eal Dat: Out}
+ Decoding function D(z) = x map latent LD Latent ntput
space Z back to data X
« Compare Input and Output with mean iy ,
squared error Z|| Encoder (I}_ z Decoder ||T
« Sample for Z and pass itto D(Z) - —
Generate new samples
MSE

 Latent space: Series of Gaussians,
regularised match N(u = 0,0 = 1)

« Using Gaussians lets us use Kullback—
Leibler divergence

* Vg Uiz + .uiz —log(g;) — 1
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Training Variation AutoEncoders

MSEloss = nn.MSELoss()
for ep in range(epochs):
for i _batch in range(max_batches):
EncoderOpt.zero_grad()
DecoderOpt.zero_grad()

# select the current batch from the dataset
¥_real = X_moons[i_batch * batch_size : (i_batch + 1) * batch_size]
%x_real = torch.tensor(x_real, device=device).float()

latent = EncoderNet(x_real)
mu = latent[:, ::2]
log var = latent[:, 1::2]

KLD = torch.mean(-2.5 * torch.sum(l + log var - mu**2 - log var.exp(), dim=1), dim=@)
std = torch.exp(®.5 * log_var)
eps = torch.randn_like(std, device=device)

reparameterized = eps * std + mu
%x_recon = DecoderNet(reparameterized)
MSE = M5Eloss(x _real, x recon)

loss = KLD * beta + MSE
loss.backward()

EncoderOpt.step()
DecoderOpt.step()
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Variational AutoEncoders

Upsides Downsides
* Directly evaluates log likelihood « MSE loss insufficient for certain data
« Stable in training sets
* Needs to balance KLD and MSE loss
terms
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Normalizing flows

 Variational AutoEncoder: map data to normal distribution and back using two
networks

« Can we do this with a single network instead?

Real Data Latent

€T H Tl* — TZ* eeeocoe Ti::_l— T: — 2
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Normalizing flows

* Train invertible model T*~! to map data to Normal distribution
* Well understood loss function:

N"‘" e

LFlow = %%O)g(}?z(T*l (Xn, 9)))]+E0g(| det Jp-1 (Xn, 9) |ﬂ
n=1 '

Latent Normal
distribution

How well does the transformed Jacobean of
sample match the latent distribution transformation
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Normalizing flows

Training direction
Real Datqg ——————————— > Latent

T H ch - T; eecceoe Tg_l— T;ik — Z

Generative direction
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Normalizing Flows

Upsides Downsides

* Directly evaluates log likelihood « Fixed dimensionality through entire
« Stable in training flow

* High generative quality « Slow generation times for large

« Easy to train and use models/data
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How do we use this?

CMS Simulation Preliminary

®——»  FULLSIM e T—

————— FullSim
*—p FASTSIM
Bl GEN — 5IM — DIGI — ERECO — AOD — MINI — HANO

L///. FlashSim

*—r FLASHSIM

* Normalizing flow to predict high-level
analysis quantities from generator-level B
information Pl 2"

* Reproduces correlations even in ML b- st hE
tagging algorithm scores A i |
« Very promising solution for end-stage A i
analyses cof AN T E PN
+ Effectively infinite MC — minimize o W= Al ANAN
statistical fluctuations R e Y ‘

A Pl & o el
o b Q‘? L Lo R A~ L
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Simulation-based inference

« Remember that in my first slide | said that the Trath

purpose of an analysis was to calculate 2D histogram
-== CARL
1.0 -
data data L2t TN S
p(x |H1) and p(x |HO) p , S
0.5 Y ;f_,---'-»\ ‘.| :
r:: ;.f ,"’ N \‘j ; _
« The methods presented here allows us to T o00] i O
approximate these probabilities densities with = A s
much more precision than simple histograms Losd A=A
\ i
-1.G Ll I !
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