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Before we start

• Go to my binder:  https://binderhub.ssl-hep.org/v2/gh/rafaellopesdesa/hsfindia-
generative/HEADgpu_false

• Go to the reweighting exercise and run the pip command.
• Let it run while I talk about what we will do…
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Run this cell and 
let’s talk about 
physics while it 

installs

https://binderhub.ssl-hep.org/v2/gh/rafaellopesdesa/hsfindia-generative/HEADgpu_false
https://binderhub.ssl-hep.org/v2/gh/rafaellopesdesa/hsfindia-generative/HEADgpu_false


Analysis and simulation

The goal of LHC analysis is to compare the data to a probability model for different 
hypothesis, usually Standard Model (SM) vs New Physics (NP) 

𝑝𝑝 𝑥𝑥data 𝐻𝐻1 and 𝑝𝑝 𝑥𝑥data 𝐻𝐻0

Building the 𝑝𝑝(𝑥𝑥|𝐻𝐻) models is really complicated.

In most cases 𝑝𝑝(𝑥𝑥|𝐻𝐻) are approximated by histograms where the number of events 
(I will call it 𝜈𝜈) in each bin comes from simulation

→ Counting MC (simulation) events.
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How do we count MC events?
In practice, MC events have weights 

𝑝𝑝 𝑥𝑥 𝐻𝐻0 =
𝜈𝜈I
bkg

𝜈𝜈bkg
=
∑bkgbin 𝐼𝐼 𝑤𝑤𝑖𝑖
∑bkg𝑤𝑤𝑖𝑖

𝑝𝑝 𝑥𝑥 𝐻𝐻1 =
𝜈𝜈I
bkg + 𝜈𝜈I

sig

𝜈𝜈bkg + 𝜈𝜈sig
=
∑bkgbin 𝐼𝐼𝑤𝑤𝑖𝑖 + ∑sigbin 𝐼𝐼 𝑤𝑤𝑖𝑖
∑bkg𝑤𝑤𝑖𝑖 + ∑sig𝑤𝑤𝑖𝑖

But what is 𝑤𝑤𝑖𝑖 again? In simulation, the probability of a given 
event is given by the differential cross section

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 ≃ 𝑤𝑤𝑖𝑖

Sometimes, we can “unweight” events, but not always…
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Negative weights
Cross sections are all positive. So why do we have negative weights?

Perturbation theory, parton shower, and interference
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Higher order terms have divergencies

A common way to remove these divergences is to 
introduce negative weights.

In addition, the same kind of emission can be 
introduced by parton showers. Negative weights are 
a common way to remove double counting. 

Processes with interference can be funny…

This is positive, but the interference term can be 
positive or negative

+

2

2Re

*



So, what’s the idea?
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Sample a phase 
space point just 
constrained by 
conservation of 

energy-momentum

Generator Simulator
𝑑𝑑𝑖𝑖 𝑑𝑑𝑖𝑖 , wi 𝑥𝑥𝑖𝑖 , wi



Simulation
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Full simulation

• Common software framework 
(usually Geant4, but others exist)

• Experiments provide additional code 
(digitization, reconstruction, …)

• Explicit modeling of detector 
geometry, materials, interactions w/ 
particles

Add thousands of additional 
variables. Sequential sampling
𝑑𝑑𝑖𝑖 ∼ 𝑝𝑝(𝑑𝑑𝑖𝑖|𝑑𝑑𝑗𝑗<𝑖𝑖 ) and 𝑥𝑥 ∼ 𝑝𝑝(𝑥𝑥|𝑑𝑑𝑖𝑖)

Fast simulation

• Usually experiment-specific 
framework

• Explicit modeling of detector 
geometry

• Add approximations: analytical 
shower shapes, truth-associated 
track reconstruction, …

Parametrized simulation

• Does not describe the detector
• Replaces entire chain (“end-to-end”)
• Can be done with analytical function 

or machine learning methods

𝑥𝑥 ∼ 𝑝𝑝(𝑥𝑥|𝑑𝑑)



Simulation landscape

How can we use ML with simulation?

• Augment the full simulation
• Improve the MC weights with data
• Calibrate your simulation

• Replace (part of) full simulation
• Create an “end-to-end” parametrized simulation

Goals: 

1. Increase speed while preserving accuracy
2. Preserve speed while increasing accuracy 
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FullSim
Geant4

FastSim

Parameterized 
simulation

Ac
cu

ra
cy

Speed

Our need

Machine 
Learning



Augment full simulation

• Usually deterministic.
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Classification based

Uses a classification loss, like the one you tried in 
Gordon’s lectures

𝐿𝐿 = −
1
𝑁𝑁�

𝑖𝑖

𝑤𝑤𝑖𝑖 𝑦𝑦𝑖𝑖 log𝑠𝑠𝑖𝑖 + 1− 𝑦𝑦𝑖𝑖 log 1 − 𝑠𝑠𝑖𝑖

The minimum of this loss function is achieved at:

𝑠𝑠(𝑥𝑥) =
𝑝𝑝1 𝑥𝑥 𝜈𝜈1

𝑝𝑝0 𝑥𝑥 𝜈𝜈0 + 𝑝𝑝1 𝑥𝑥 𝜈𝜈1
 

If 𝜈𝜈0 = 𝜈𝜈1 (balanced) 𝑝𝑝1 𝑥𝑥𝑝𝑝0 𝑥𝑥
= 𝑠𝑠

1−𝑠𝑠

Regression based

Uses a regression loss, for instance MSE (there are 
others):

𝐿𝐿 = −
1
𝑁𝑁�

𝑖𝑖

𝑤𝑤𝑖𝑖 𝑦𝑦𝑖𝑖 − 𝑠𝑠𝑖𝑖 2

Creates a calibration function 𝑠𝑠𝑖𝑖(𝑥𝑥𝑖𝑖)

But it only calibrates the average (conditional on 𝑥𝑥𝑖𝑖), 
not full distributions.



Classification-based reweighting

• Relies on finding a control region (CR).
• Reweight between CR and SR need to 

be validated carefully.

• Try the activity in binder!
• https://binderhub.ssl-hep.org/v2/gh/rafaellopesdesa/hsfindia-

generative/HEADgpu_false
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𝐶𝐶𝑅𝑅data 𝑆𝑆𝑅𝑅data

𝐶𝐶𝑅𝑅sim 𝑆𝑆𝑅𝑅sim

𝑆𝑆𝑅𝑅data =
𝐶𝐶𝑅𝑅data
𝐶𝐶𝑅𝑅sim

× 𝑆𝑆𝑅𝑅sim

https://binderhub.ssl-hep.org/v2/gh/rafaellopesdesa/hsfindia-generative/HEADgpu_false
https://binderhub.ssl-hep.org/v2/gh/rafaellopesdesa/hsfindia-generative/HEADgpu_false


Intermezzo

• Now let’s do the second part…

• Go to the generative directory in binder and run the pip cell (it assumes you are 
using the same session as the reweight one)
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Optimal transport

• Moving points instead of reweighting 
histograms

• “Optimal” : Transport minimize some cost 
(𝐿𝐿2)

• Order preserving transformation between 
P and Q 

• Easily scalable to higher dimensions
• Correct higher order correlation
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1D optimal transport
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ML optimal transport

Idea: Why not move the simulation instead of 
reweighting it? 

• Optimal Transport  
• Continuous calibration without histograms
• Easily scales to higher dimensions and cheap 
• Integral of sample unchanged
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Optimal transport

• Very recently, a solution on how to train multi-dimensional OT with ML has been 
found.

• Brand new area of ML that is just now finding applications
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Generative methods

• Generative models (“replace”):
• Usually stochastic
• Generative Adversarial Networks (GANs) 
• Variational Autoencoders(VAEs) 
• Normalizing Flows (NFs)
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Generative Adversarial Network
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• Generator Network 𝐺𝐺 𝑑𝑑 = 𝑥𝑥
• Maps noise 𝑑𝑑 to 𝑥𝑥



Generative Adversarial Network
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• Generator Network 𝐺𝐺 𝑑𝑑 = 𝑥𝑥
• Maps noise 𝑑𝑑 to 𝑥𝑥

• Discriminator 𝐷𝐷(𝐺𝐺 𝑑𝑑 ) and 𝐷𝐷 𝑥𝑥
• Learns difference between real 

and fake

• 𝐷𝐷(𝐺𝐺(𝑑𝑑)) is differentiable function 
measuring performance 

• Use 𝐷𝐷(𝐺𝐺(𝑑𝑑)) as loss to update G



Generative Adversarial Network
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Generative Adversarial Network
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Upsides

• Intuitive approach
• Easy to introduce additional 

constraints
• Well explored with several 

improvements (WGANs, 
normalizations)

Downsides

• Difficult to train
• Gen. and disc. needs to be balanced
• Can fail to converge
• Prone to mode collapse



Simulation of showers in ATLAS calorimeter
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Simulation of showers in ATLAS calorimeter
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FastCaloGAN V2

Different GAN for different type of particles 
and for different eta slices.

Prediction of deposit of energy in “voxels” 
which allow HITS reconstruction.



How do we use this in a fast MC?
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Variational AutoEncoders (VAE)
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• Encoding function 𝐸𝐸(𝑥𝑥) = 𝑑𝑑 map high 
dimensional data 𝑋𝑋 to low dimensional 
latent space 𝑍𝑍

• Decoding function 𝐷𝐷(𝑑𝑑) = 𝑥𝑥 map latent 
space 𝑍𝑍 back to data 𝑋𝑋

• Compare Input and Output with mean 
squared error

• Sample for 𝑍𝑍 and pass it to 𝐷𝐷(𝑍𝑍) →
Generate new samples

• Latent space: Series of Gaussians, 
regularised match 𝑁𝑁(𝜇𝜇 = 0,𝑑𝑑 = 1)

• Using Gaussians lets us use Kullback–
Leibler divergence

• ∑𝑖𝑖=1
𝑛𝑛 𝑑𝑑𝑖𝑖

2 + 𝜇𝜇𝑖𝑖
2 − log 𝑑𝑑𝑖𝑖 − 1



Training Variation AutoEncoders
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Variational AutoEncoders
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Upsides

• Directly evaluates log likelihood
• Stable in training

Downsides

• MSE loss insufficient for certain data 
sets

• Needs to balance KLD and MSE loss 
terms



Normalizing flows

• Variational AutoEncoder: map data to normal distribution and back using two 
networks

• Can we do this with a single network instead?
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Normalizing flows

• Train invertible model 𝑇𝑇∗−1 to map data to Normal distribution
• Well understood loss function:
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Normalizing flows
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Normalizing Flows
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Upsides

• Directly evaluates log likelihood
• Stable in training 
• High generative quality 
• Easy to train and use

Downsides

• Fixed dimensionality through entire 
flow

• Slow generation times for large 
models/data



How do we use this?
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• Normalizing flow to predict high-level 
analysis quantities from generator-level 
information

• Reproduces correlations even in ML b-
tagging algorithm scores

• Very promising solution for end-stage 
analyses

• Effectively infinite MC → minimize 
statistical fluctuations 



Simulation-based inference

• Remember that in my first slide I said that the 
purpose of an analysis was to calculate

𝑝𝑝 𝑥𝑥data 𝐻𝐻1 and 𝑝𝑝 𝑥𝑥data 𝐻𝐻0

• The methods presented here allows us to 
approximate these probabilities densities with 
much more precision than simple histograms
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