



# Introduction to GPU programming



#### **HSF-India HEP Software Workshop**

**Charis Kleio Koraka** 

Tuesday December 18<sup>th</sup>-22<sup>nd</sup> 2023

### Who am I?

- Grew up in Athens, Greece
- Joined the CMS experiment in 2016 as a master student, stayed with CMS ever since
- Did my PhD in the University of Athens on the measurement of the ttH associated production

But what do I do right now?

- Postdoc at University of Wisconsin-Madison
- Interested in searches for very heavy fermions like vector-like leptons and quarks
- Working with cms offline software trying to convince people that software should be written with GPUs and parallel computing in mind :D

#### **Overview**

- Hardware accelerators and heterogeneous computing
- The GPU
- GPU applications in HEP
- The CUDA programming model

### Hardware accelerators

• Devices built for **executing specific tasks more efficiently** compared to running on the standard computing architecture of a CPU

- Come in many flavors :
  - GPUs / FPGAs / TPUs ...

- Part of our everyday lives :
  - Encryption, video stream decoding, 3D graphics acceleration, pattern/object recognition, machine learning, AI and many more

# Central processing unit (CPU)

#### Silicon-based micro-processor

Used in most of our computers since it can handle a variety of tasks.

Performs certain types of operations **serially** :

- Arithmetic (+,\*)
- Logical functions (AND, OR, NOT)
- Input/Output (I/O) operation

Is able to execute a sequence of instructions, which constitutes the "program"



#### The CPU is the brain of our computer, that reads information, performs calculations and moves it where it needs to go

### How does a CPU work ? (1)

#### Principal components of a CPU :

- <u>Arithmetic Logic Unit (ALU) :</u>
  - Used to perform arithmetic and logic operations on integer binary numbers
- <u>Processor registers :</u>
  - A quickly accessible location available to a computer's processor
  - Is used to supply operands to the ALU and store the results of the ALU operations
- <u>Control Unit (CU)</u>
  - Is in charge of orchestrating fetching from memory / decoding / execution of instructions etc.

\* Image taken from [1]



\* Schematic representation of an ALU

### How does a CPU work ? (2)

CPUs are implemented on integrated circuit (IC) microprocessors :

- A single IC chip can have one or more CPU cores
- Microprocessor chips with multiple CPUs are **multi-core processors**
- Processor cores can also be multithreaded to create additional virtual CPUs

Schematic representation of principal components that form a CPU





#### How are hardware accelerators used?



- In accelerated computing we take the compute intensive parts of the application code and parallelize that for execution on e.g. a GPU
  - Typically integer or floating-point mathematical operations
  - The remainder of the code (usually the vast majority) remains on the CPU
    - The part of code that remains on the CPU is ideally serial code
- Data between the CPU and the accelerator has to be transferred

### Heterogeneous computing

- Heterogeneous computing involves using multiple different types of processors to accomplish a task
- Code can run on more than one platform concurrently
- A heterogeneous system can consist of :
  - Different types of CPUs (i.e. combine compute powerful with less compute powerful but more power efficient CPU cores)
  - Hardware accelerators



Image source [i]

### Some types of hardware accelerators (1)

- **GPU** (Graphic Processing Unit)
  - Initially developed for graphics processing
  - Optimized for parallel processing of floating-point operations & used in a variety of tasks

- **FPGA** (Field-Programmable Gate Array)
  - Integrated circuit (IC) configurable by the user and provides interface flexibility
  - FPGAs can be reprogrammed to suit the needs of the application or required functionality





Image sources [i], [ii]

### Some types of hardware accelerators (2)

- **ASIC** (Application-Specific Integrated Circuit)
  - IC chip customized for a particular use
  - i.e. lower precision and/or optimised memory usage to maximize throughput
- **TPU** (Tensor Processing Unit)
  - Optimised to perform matrix-multiplication operations / used in e.g. NN and RF training
- **VPU** (Vision Processing Unit)
  - Used to accelerate machine vision algorithms, i.e. CNNs , AI etc.









Image sources [i] , [ii], [iii]

# The GPU

# The Graphic Processing Unit (GPU)

#### **GPUs are similar to CPUs :**

• Silicon based micro-processor that contain cores, registers, memory, and other components.

#### But also very different :

- Many-core processor
- Follows the **Single instruction, multiple threads (SIMT)** execution model
  - Asynchronous programming model where threads are not executed in lockstep
- GPU acceleration emphasizes on :
  - **High data throughput and massive parallel computing:** a GPU consist of hundreds of cores performing the same operation on multiple data items in parallel.





### Multi-core vs many-core architectures

#### **Multi-core processors**

- Built on a single IC with two or more processing units (**cores**)
- Emphasis on high single-thread performance
- Better latency
- Can be complemented by a many-core system

#### Many-core processors

- Much higher degree of parallelism compared to a multi-core processors
- Emphasis on maximizing throughput
- Lower single-threaded performance and worse latency compared to multi-core processors

# Why GPUs?



- Moore's law states that the number of transistors in a dense IC doubles every ~2 years.
- Since ~2010 there seems to be a plateauing in single- thread performance
- Gains expected through exploiting parallelization

Image source [1]

### The NVidia GPU architecture



- The GPU architecture is built around a scalable array of **Streaming Multiprocessors (SM).**
- Each SM in a GPU is designed to support concurrent execution of hundreds of threads

Image source [3]

### The NVidia GPU architecture



- The GPU architecture is built around a scalable array of **Streaming Multiprocessors (SM).**
- Each SM in a GPU is designed to support concurrent execution of hundreds of threads



Image source [3]

### The NVidia GPU architecture



### The Streaming Multiprocessor



The SM consists of :

- Execution cores
  - e.g. single precision floating-point, special function units etc.

### The Streaming Multiprocessor



The SM consists of :

#### • Execution cores

• e.g. single precision floating-point, special function units etc.

#### • Schedulers for warps

 These are used for issuing instructions to warps based on a particular scheduling policies.

### The Streaming Multiprocessor



The SM consists of :

#### Execution cores

• e.g. single precision floating-point, special function units etc.

#### Schedulers for warps

 These are used for issuing instructions to warps based on a particular scheduling policies.

#### Registers

• fast on-chip memory used to store operands for the operations executed by the GPU cores

#### Caches

- Intermediate high-speed storage resources between the processor and memory
- L1/constant/texture cache, Shared memory

#### Hardware to software mapping



- A scalar processor or CUDA core is equivalent to a software thread
- Scalar processors are grouped into a SM
- Each execution of a GPU function is done concurrently on a number of threads referred to as a **thread block**
- Each thread block is executed by one SM and cannot be migrated to other SMs in GPU
- The **set of thread blocks** executing the GPU function is called a **grid**.
- In CUDA terminology the GPU is referred to as the device



# Memory hierarchy of the GPU

Image source [1]



Image source [1]



#### Memory hierarchy of the GPU

Image source [1]



Image source [1]



### **CPU vs GPU - overview of main differences**

#### CPU

- ~O(10) powerful cores
  - Larger instruction set
- Low latency
- Serial processing
- Complex operations
- Higher clock speeds

| Core<br>L1 Cache | Con<br>trol | Core<br>L1 Cache | Con<br>trol |
|------------------|-------------|------------------|-------------|
| Core<br>L1 Cache | Con<br>trol | Core<br>L1 Cache | Con<br>trol |
| L2 Cache         |             | L2 Cache         |             |
| L3 Cache         |             |                  |             |
| DRAM             |             |                  |             |
|                  | CP          | U                | 4           |

#### GPUs

- ~O(1000) of less powerful cores
  - $\circ$  Smaller instruction set
- High throughput
- Parallel processing
- Simple operations
- Better per-watt performance



Image source [4]

### Performance comparison of CPUs and GPUs (1)

FLOPS : Floating-Point Operations per Second

- Measure of computing performance useful in fields that require floating-point calculations (such as HEP)
- GPUs can deliver more FLOPS compared to CPUs



Image source 🛄

### Performance comparison of CPUs and GPUs (2)

FLOPS per Watt :

 Rate of floating-point operations performed per watt of energy consumed

Important since power consumption is limiting factor in hardware manufacturing/usage:

• Peak performance constrained by the amount of power it can draw and the amount of heat it can dissipate



# **GPUs in High Energy Physics**

# **Computing needs in HEP**



- Event generation
- Simulation
- Event reconstruction
- Event post-processing
- Data analysis



### How can GPUs help?

- Event generation
- Simulation
- Event reconstruction
- Event post-processing
- Data analysis



### How can GPUs help?

- Event generation
- Simulation
- Event reconstruction
- Event post-processing
- Data analysis

- Track reconstruction, primary vertex reconstruction, raw data unpacking, clustering etc.
- Various efforts in different experiments (Patatrack track reconstruction [i], Allen project [ii], ALICE TPC track reconstruction [iii] etc.)



### How can GPUs help?

- Event generation
- Simulation
- Event reconstruction
- Event post-processing
- Data analysis



# Introduction to CUDA

# The CUDA programming model

**CUDA** → **C**ompute **U**nified **D**evice **A**rchitecture.

- It is an extension of C/C++ programming
- Developed by Nvidia and is used to develop applications executed on NVidia GPUs

To execute any CUDA program, there are three main steps:

- Copy the input data from CPU or host memory to the device memory
- Execute the CUDA program
- Copy the results from device memory to host memory



# nvidia-smi

nvidia-smi: NVIDIA System Management Interface program

- Command line utility
- Aids in the management and monitoring of NVIDIA GPU devices

```
Lets try this out!
Click on the following link to access a GPU
https://binderhub.ssl-hep.org/v2/gh/research-software-collaborations/courses-hsf-india-december2023/gpu onlycudagpu true
Click on the Terminal icon (will look like this \rightarrow
                                                            $_
                                                             Terminal
Then type the following in the terminal:
nvidia-smi
What do you see ? Let's now try running a small utility script :
cd hsf-india-gpus
nvcc deviceInfo.cu -o deviceInfo
./deviceInfo
What do you see now?
```

# nvidia-smi

nvidia-smi: NVIDIA System Management Interface program

- Command line utility
- Aids in the management and monitoring of NVIDIA GPU devices

|                                                                               | Can you answer some questions?                                                                                                                                                                         | december2023/gpu_onlycudagpu_true |
|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| Then type the<br><b>nvidia-smi</b><br>What do you se<br><b>cd hsf-india-g</b> | <ul> <li>How many devices are found?</li> <li>What type of GPUs are they?</li> <li>How many SMs per device?</li> <li>What is the warp size?</li> <li>How many threads are allowed per block</li> </ul> | k?                                |
| nvcc deviceInf<br>./deviceInfo<br>What do you see                             | now?                                                                                                                                                                                                   |                                   |

#### **1.** Copy data for host to device



Image source [1]

## 2. Execute the CUDA program



Image source [1]

#### 3. Copy data from device back to host



Image source [1]

#### **Threads & blocks**

- In CUDA, built-in variables are available in order to express threads and blocks :
  - threadIdx & blockIdx
- The variables have 3-dimensional indexing & provide a natural way to express elements in vectors and matrices
   :
  - $\circ$  threadIdx.x , threadIdx.y , threadIdx.z
- CUDA architecture limits the numbers of threads per block (1024 threads per block limit).
- The dimension of the thread block is accessible within the kernel through the built-in **blockDim** variable.







## Indexing using blockIdx and threadIdx

- The threadIdx & blockIdx variables can be used to express the unique index of an element in an array/matrix etc.
- Assuming that each block consists of a number of M threads :
  - o index = threadIdx.x + blockIdx.x \* M;



Image source [1]

## Indexing using blockIdx and threadIdx

- The threadIdx & blockIdx variables can be used to express the unique index of an element in an array/matrix etc.
- Assuming that each block consists of a number of M threads :
  - o index = threadIdx.x + blockIdx.x \* M;





#### Warps

- Within a thread block, threads are executed in groups → **Warps**
- A warp is an entity of 32 threads on Nvidia GPUs
- If the block size is not divisible by 32, some of the threads in the last warp will remain idle :
  - block size should be chosen to be a multiple of the warp size

Warp 2

Thread 64

Thread 96

...

• Threads in the same warp are processed simultaneously

Warp 1

Thread 32

Thread 63

Warp 0

Thread 0

Thread 31



#### **CUDA kernel**

- **CUDA kernel is a function** that gets executed on the GPU
- The kernel expresses the portion of the application that is parallelizable
  - It will be executed multiple times in parallel by different CUDA threads

| Program<br>equential<br>xecution   |                                 |        |  |  |  |  |
|------------------------------------|---------------------------------|--------|--|--|--|--|
| Serial code                        | Host                            |        |  |  |  |  |
| Parallel kernel                    | Device                          |        |  |  |  |  |
| Kernel0<<<>>>()                    | Grid 0                          |        |  |  |  |  |
|                                    |                                 | (2, 0) |  |  |  |  |
|                                    | Block (0, 1) Block (1, 1) Block | (2, 1) |  |  |  |  |
|                                    |                                 |        |  |  |  |  |
| Serial code                        | Host                            |        |  |  |  |  |
|                                    | Device                          |        |  |  |  |  |
| Parallel kernel<br>Kernel1<<<>>>() | Grid 1                          |        |  |  |  |  |
|                                    | Block (0, 0) Block (1, 0        | ))     |  |  |  |  |
|                                    | Block (0, 1) Block (1, 1        | )      |  |  |  |  |
|                                    |                                 |        |  |  |  |  |
|                                    | Block (0, 2) Block (1, 2        | 9      |  |  |  |  |

## **CUDA function declarations**

| Declaration | Callable from: | Executed on:<br>device<br>device |  |  |
|-------------|----------------|----------------------------------|--|--|
| global      | host           |                                  |  |  |
| device      | device         |                                  |  |  |
| host        | host           | host                             |  |  |

- \_\_global\_\_ keyword defines a kernel function:
  - Is launched by host and executed on the device
  - Must return void
- \_\_device\_\_ and \_\_host\_\_ can be used together
- \_\_host\_\_ declaration, if used alone, can be omitted

# Launching a CUDA kernel

• Let's assume we have the following kernel :



- The above command will launch the kernel with **nBlocks**, each of which has **nThreads**
- The kernel is executed multiple times concurrently by different threads
- The total number of invocations of the kernel body is now **nBlocks** \* **nThreads**.

#### Memory management

- The host and device have their own separate memory:
  - Device pointers point to GPU memory
  - Host pointers point to CPU memory
- CUDA kernels operate out of device memory
- CUDA provides functions to allocate device memory, release device memory, and transfer data between the host memory and device memory :



#### Memory management

| <ul> <li>Host pointers :         <ul> <li>Typically not passed to device code</li> <li>Typically not dereferenced in device code</li> </ul> </li> <li>Device pointers :         <ul> <li>Typically passed to device code</li> <li>Typically not dereferenced in host code</li> </ul> </li> </ul> | <pre>int* a;<br/>int* d_a;<br/>// Host copy of variable a<br/>a = (int*) malloc(sizeof(int));<br/>// Device copy of variable a Let's take a<br/>cudaMalloc(&amp;d_a, sizeof(int));<br/>// Set the host value of a look at the<br/>syntax of<br/>cudamalloc<br/>*a = 1;<br/>// Copy the value of a to the device<br/>cudaMemcpy(d_a, a, sizeof(int), cudaMemcpyHostToDevice);<br/>// Launch the kernel to set the value<br/>do_something&lt;&lt;&lt;1,1&gt;&gt;&gt;(d_a);<br/>cudaDeviceSynchronize();</pre> |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul><li>For transfers between host and device memory the direction can be :</li><li>Copying data from CPU to GPU</li></ul>                                                                                                                                                                       | <pre>// Copy the value of a back to the host cudaMemcpy(a, d_a, sizeof(int), cudaMemcpyDeviceToHost); // Free the allocated memory free(a); cudaFree(d_a);</pre>                                                                                                                                                                                                                                                                                                                                            |

• Copying data from GPU to CPU <

#### Memory management

| <ul> <li>Host pointers:         <ul> <li>Typically not passed to device code</li> <li>Typically not dereferenced in device</li> </ul> </li> <li>Device pointers:         <ul> <li>Typically passed to device code</li> <li>Typically not dereferenced in host</li> </ul> </li> <li>For transfers between host and device memory direction can be :</li> </ul> | <pre>a = (int*) malloc(sizeof(int));<br/>// Device copy of variable a Let's take a<br/>cudaMalloc(&amp;d_a, sizeof(int));<br/>// Set the host value of a<br/>*a = 1;<br/>// Copy the value of a to the device<br/>cudaMemcpy(d_a, a, sizeof(int), cudaMemcpyHostToDevice);<br/>// Launch the kernel to set the value<br/>do_something&lt;&lt;&lt;1,1&gt;&gt;&gt;(d_a);<br/>cudaDeviceS/nchronize();<br/>// Copy the value of a back to the host</pre> |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Copying data from CPU to GPU</li> <li>Copying data from GPU to CPU</li> </ul>                                                                                                                                                                                                                                                                        | Remember the order for copying variables from host $\leftarrow \rightarrow$ device!                                                                                                                                                                                                                                                                                                                                                                   |

## **Synchronization**

- CUDA kernel calls are asynchronous :
  - Once the kernel is launched the main program that is executed on the CPU continues normally !
- Additionally, execution order of blocks on a SMs is arbitrary
  - We need a way to synchronise!
- We can call **CudaDeviceSynchronize()** from host
  - blocks the CPU execution until all work launched on the device has finished.
- Includes both:
  - kernel launches
  - memory copies

Grid level synchronization

## Synchronization

For each kernel launch with N threads/block & M blocks :

- Execution order of threads within one block is arbitrary :
  - Only exception are threads in the same warp which are processed simultaneously
- We might have a problem, where we require all threads in a specific block to have completed execution of a specific task before continuing the next task
- To synchronize threads within one block one can call \_\_\_**syncthreads()** within the kernel

```
_global__ void myKernel () {
   for (int i = threadIdx.x; i < N; i++) {
      Fill variable[threadIdx.x]
   }
   __syncthreads();
   for (int i = threadIdx.x; i < N; i++) {
      Use variable[threadIdx.x]
   }
}</pre>
```



## **Atomic operations**

- Useful when modifying the same value in memory from different threads :
  - Are used to prevent race conditions in multithreaded applications
  - Read-modify-write cannot be interrupted
    - Appear to be one operation
- Atomics are special hardware instruction on NVIDIA GPUs e.g.:
  - atomicAdd/Sub (Add or subtract)
    - e.g. syntax : atomicAdd(int\* address, int val);
  - atomicMax/Min (Find max or min)
  - atomicExch/CAS (Swap or conditionally swap variables)
    - e.g. syntax : atomicCAS ( &addr, compare, value )
  - atomicAnd/Or/Xor (bitwise operations)



o ...

## Adding elements in a vector

Let's start by writing a CUDA kernel that calculated the sum of the elements of a vector :

```
__global__ void add_array(float* A, float* sum) {
    int idx = threadIdx.x + blockIdx.x * blockDim.x;
    if (idx < N) {
        *sum +=A[idx];
    }
}</pre>
```

- There are 3 instructions that will be executed :
  - Load the value of A for each thread
  - **Read** the value of c
  - Modify the value of c



# Adding elements in a vector

Let's start by writing a CUDA kernel that calculated the sum of the elements of a vector :

```
__global__ void add_array(float* A, float* sum) {
    int idx = threadIdx.x + blockIdx.x * blockDim.x;
    if (idx < N) {
        *sum +=A[idx];
    }
}</pre>
```

- There are 3 instructions that will be executed :
  - Load the value of A for each threa
  - Read the value of c
  - Modify the value of c

The behaviour of this kernel will be unpredictable! The read/writes can happen in random orders. **The sum might be incorrect!!!** 

A[i]

SumA[i]

## Adding elements in a vector

Using **atomicAdd** to sum the vector elements :

```
global void add_array(float* A, float* sum) {
 int idx = threadIdx.x + blockIdx.x * blockDim.x;
 if (idx < N) {
    atomicAdd(sum,A[idx]);
Each read-modify-write access cannot
be interrupted
```



## Putting together a CUDA program



## Good practices : Error handling

• Error codes can be converted to a human-readable error messages with the following CUDA run- time function:

```
char* cudaGetErrorString(cudaError_t error)
```

• A common practice is to wrap CUDA calls in utility functions that manage the error returned :

```
int* a;
// Illegal: cannot allocate a negative number of bytes
cudaError_t err = cudaMalloc(&a, -1);
if (err != cudaSuccess) {
    printf("CUDA error %s\n", cudaGetErrorString(err));
    exit(-1);
}
```

• To detect errors in a kernel launch, we can use the API call **cudaGetLastError()** which returns the error code for whatever the last CUDA API call was.

```
cudaError_t err = cudaGetLastError();
```

• For errors that occurs asynchronously during the kernel launch, **cudaDeviceSynchronize()** has to be invoked after the kernel in order to return any errors associated with the kernel launch.

## Compilation

- Compiling a CUDA program is similar to compiling a C/C++ program.
- Cuda code should be typically stored in a file with extension .cu
- NVIDIA provides a CUDA compiler called **nvcc** :
  - nvcc is called for CUDA parts
  - gcc is called for c++ parts
  - nvcc converts .cu files into C++ for the host system and CUDA assembly or binary instructions for the device

• Usage :

nvcc myCudaProgram.cu -o myCudaProgram



# Wrapping-up

## Summary

- Hardware accelerators are a part of everyday life and are used in heterogeneous computing systems
- GPUs emphasize on high data throughput and massive parallel computing
- GPUs have made their way into HEP and are used for many applications
- The CUDA programming model :
  - Extension of C/C++ programming developed by Nvidia and used for applications executed on Nvidia GPUs
  - CPU and GPU system are referred to as host and device respectively.
    - The host and device have their own separate memory
  - Typically, we run serial workload on the CPU and offload parallel computation to the GPUs
    - CUDA threads are used to execute work in parallel
  - Basic CUDA syntax:
    - \_\_global\_\_ function declaration (kernel) is called from the host and executed on the device
    - Memory management can be performed using cudaMalloc(), cudaFree() & cudaMemcpy()
    - To launch a CUDA kernel with N blocks and M threads/block syntax is <<<N,M>>>()

# Back-up

#### Resources

- 1. NVIDIA Deep Learning Institute material link
- 2. 10th Thematic CERN School of Computing material link
- 3. Nvidia turing architecture white paper <u>link</u>
- 4. CUDA programming guide <u>link</u>
- 5. CUDA runtime API documentation link
- 6. CUDA profiler user's guide <u>link</u>

## Flynns classification of computer architecture

Based on the number of instruction and data streams that can be processed simultaneously, computing systems are classified into four major categories
 i.e pipeline



#### **Coalesced global memory access**

- Global memory loads and stores data in as few as possible transactions → <u>coalesced memory access</u>
- Important performance consideration as it can affect the time needed to access data
- Every successive 128 bytes (DRAM burst) can be accessed by a warp
- If the data accessed by the threads in a warp are not in the same burst section, the data access will take twice as long





#### Matrix multiplication





## **Thread synchronization**

- A kernel call is asynchronous with respect to the host thread :
  - After a kernel is invoked, the program returns to the host side and continues execution.
- There are two levels of synchronization
  - Block level
  - Grid level
- To synchronize threads within one block :
  - Call \_\_syncthreads() within the kernel code
- To synchronize threads at grid level
  - Call to CudaDeviceSynchronize() from host code.
  - Program waits until all work launched on the device has finished.

```
global__ void myKernel () {
  for (int i = threadIdx.x; i < N; i++) {
    Fill variable[threadIdx.x]
  }
  _____syncthreads();
  for (int i = threadIdx.x; i < N; i++) {
    Use variable[threadIdx.x]
  }
}</pre>
```

```
int* a;
int* d a;
// Host copy of variable a
a = (int*) malloc(sizeof(int));
// Device copy of variable a
cudaMalloc(&d a, sizeof(int));
// Set the host value of a
*a = 1:
// Copy the value of a to the device
cudaMemcpy(d a, a, sizeof(int), cudaMemcpyHostToDevice);
// Launch the kernel to set the value
do something<<<1,1>>>(d a);
cudaDeviceSynchronize();
// Copy the value of a back to the host
cudaMemcpy(a, d a, sizeof(int), cudaMemcpyDeviceToHost);
// Free the allocated memory
free(a);
cudaFree(d a);
```

# Profiling (1)

- Similarly to CPU code, GPU code can be profiled
- Goal of profiling is to identify and optimise performance limiters.
- Common reasons for limited performance include :
  - Portions of the code that run serially on the CPU
  - Memory copies for host to device
  - Latency of launching GPU kernels
  - Uncoalesced memory accesses, lack of cache reuse, not using shared memory, register spilling etc.
  - Low arithmetic intensity (operations computed per byte accessed from memory)



# Profiling (2)

- Many profiling tools exist. Some commonly used ones include
- nsys :

Image source [6]

- Command line profiler for CUDA applications
- Results can be saved for later viewing by the Visual Profiler.
- nvvp / ncu :
  - Nvidia Visual Profiler, Nsight Compute
  - Interactive kernel profilers for CUDA applications.
  - Provide detailed performance metrics and API debugging via a user interface and command line/tool.

|                                                    | 2.5 | 0.325 | S    | 0.33 s  | 0.335 s | 0.34 s     | 0.345          | 5s 0.35s            |
|----------------------------------------------------|-----|-------|------|---------|---------|------------|----------------|---------------------|
| <ul> <li>Process "diverge" (14385)</li> </ul>      |     |       |      |         |         |            |                |                     |
| Thread 29824768                                    |     |       |      |         |         |            |                |                     |
| - Runtime API                                      |     |       |      |         |         | ncpyAsync  |                |                     |
| L Driver API                                       |     |       |      |         |         |            |                |                     |
| Profiling Overhead                                 |     |       |      |         |         |            |                |                     |
| 🖃 [0] Tesla K20c                                   |     |       |      |         |         | - <b>1</b> |                |                     |
| Context 1 (CUDA)                                   |     |       |      |         |         |            |                |                     |
| - 🍸 MemCpy (HtoD)                                  |     |       |      |         |         |            |                |                     |
| - 🍸 MemCpy (DtoH)                                  |     |       |      |         |         |            |                |                     |
| Compute                                            |     | Vecl  | Vecl | Veclof. | VecT Ve | c5 Vec1    | Veclof32x(int* | *, int*, int*, int) |
| \$\[ \T 58.0% \Vec1of32x(int*, int*, int*, int] \] |     | Vecl  | Vecl | Veclof. |         |            | Vec1of32x(int* | *, int*, int*, int) |
| 12.6% VecThen(int*, int*, int*, int)               |     |       |      |         | VecT    |            |                |                     |
| 11.5% Vec50(int*, int*, int*, int)                 |     |       |      |         | Ve      | c5         |                |                     |
| 11.3% Vec1of32(int*, int*, int*, int)              |     |       |      |         |         | Vecl       |                |                     |
| 5.7% Vec32of32(int*, int*, int*, int)              |     |       |      |         |         |            |                |                     |
| WecEmpty(void)                                     |     | 1     |      |         | 1       |            |                |                     |
| Streams                                            |     |       |      |         |         |            |                |                     |
| L Default                                          |     | Vecl  | Vecl | Veclof. | VecT Ve | c5 Vec1    | Veclof32x(int? | *, int*, int*, int) |

```
$ nyprof matrixMul
[Matrix Multiply Using CUDA] - Starting..
==27694== NVPROF is profiling process 27694, command: matrixMul
GPU Device 0: "GeForce GT 646M LE" with compute capability 3.0
MatrixA(320,320), MatrixB(640,320)
Computing result using CUDA Kernel.
Performance= 35.35 GFlop/s, Time= 3.708 msec, Size= 131072000 Ops, WorkgroupSize= 1024 threads/block
Checking computed result for correctness: OK
Note: For peak performance, please refer to the matrixMulCUBLAS example.
==27694== Profiling application: matrixMul
==27694== Profiling result:
(%)emiT
          Time
                   Calls
99.94% 1.115248
                     301 3.705ims 3.6928ms 3.7174ms void matrixMulCUDA<int=32>(float*, float*, float*, int, int)
 0.04% 400.30us
                       2 203.15us 136.13us 270.18us [CUDA memcpy HtoD]
 0.02% 248.29us
                       1 248.29us 248.29us 248.29us [CUDA memopy DtoH]
==27964== API calls
Time(%)
           Time
                    Calls
                               Avg
                                       Min
 49.81% 285.17ms
                       3 95.855ms 153.32us 284.86ms cudaMalloc
 25.95% 148.57ms
                        1 148.57ms 148.57ms 148.57ms cudaEventSynchronize
 22.23% 127.28ms
                       1 127.28ms 127.28ms 127.28ms cudaDeviceReset
 1.33% 7.6314ms
                      301 25.353us 23.551us 143.98us cudaLaunch
 0.25% 1.4343ms
                       3 478.09us 155.84us 984.38us cudaNemcpy
 0.11% 601.45us
                        1 601.45us 601.45us 601.45us cudaDeviceSynchroniz
 0.10% 564.48us
                     1585 375ns
                                     313ns 3.6798us cudaSetupArgument
 0.09% 490.44ut
                       76 6.4538us
                                      307ns 221.93us cuDeviceGetAttribute
 0.07% 406.61us
                       3 135.54us 115.07us 169.99us cudaFree
 0.02% 143.0008
                      301 47508
                                    431ns 2.4370us cudaConfigureCall
 0.01% 42.321us
                       1 42.321us 42.321us 42.321us cuDeviceTotalMem
 0.01% 33.655us
                        1 33.655us 33.655us 33.655us cudaGetDeviceProperties
 0.01% 31.900us
                        1 31.988us 31.988us 31.988us cuDeviceGetName
 0.00% 21.874us
                        2 10.937us 8.5856us 13.289us cudaEventRecord
 0.00% 16.513us
                       2 8.2560us 2.6240us 13.889us cudaEventCreate
                       1 13.091us 13.091us 13.091us cudaEventElapsedTime
 8 80% 12 80108
 0.00% 8.1410us
                       1 8.1410us 8.1410us 8.1410us cudaGetDevice
 8.88% 2.629808
                        2 1.3140us
                                     509ns 2.1200us cuDeviceGetCount
 0.00% 1.9970us
                       2 00809
                                    520ns 1.4770us cuDeviceGet
```

