
Introduction to GPU
programming

HSF-India HEP Software Workshop

Charis Kleio Koraka

Tuesday December 18th-22nd 2023

HSF-India HEP Software workshop - Introduction to GPU programming - Charis Kleio Koraka - December 20th 2023

Who am I?

● Grew up in Athens, Greece
● Joined the CMS experiment in 2016 as a master student, stayed with CMS ever

since
● Did my PhD in the University of Athens on the measurement of the ttH associated

production

But what do I do right now?

● Postdoc at University of Wisconsin-Madison
● Interested in searches for very heavy fermions like vector-like leptons and quarks
● Working with cms offline software trying to convince people that software should

be written with GPUs and parallel computing in mind :D

2

HSF-India HEP Software workshop - Introduction to GPU programming - Charis Kleio Koraka - December 20th 2023

Overview

● Hardware accelerators and heterogeneous computing
● The GPU
● GPU applications in HEP
● The CUDA programming model

3

HSF-India HEP Software workshop - Introduction to GPU programming - Charis Kleio Koraka - December 20th 2023

Hardware accelerators
● Devices built for executing specific tasks more efficiently compared to running on the

standard computing architecture of a CPU

● Come in many flavors :
○ GPUs / FPGAs / TPUs …

● Part of our everyday lives :
○ Encryption, video stream decoding, 3D graphics acceleration, pattern/object

recognition, machine learning, AI and many more

4

HSF-India HEP Software workshop - Introduction to GPU programming - Charis Kleio Koraka - December 20th 2023

Central processing unit (CPU)
Silicon-based micro-processor

Used in most of our computers since
it can handle a variety of tasks.

Performs certain types of operations
serially :

● Arithmetic (+,*)
● Logical functions (AND, OR,

NOT)
● Input/Output (I/O) operation

Is able to execute a sequence of
instructions, which constitutes the
“program”

5

The CPU is the brain of our computer, that reads information, performs calculations and moves it where it needs to go

HSF-India HEP Software workshop - Introduction to GPU programming - Charis Kleio Koraka - December 20th 2023

How does a CPU work ? (1)

Principal components of a CPU :

● Arithmetic Logic Unit (ALU) :
○ Used to perform arithmetic and logic operations on

integer binary numbers

● Processor registers :
○ A quickly accessible location available to a computer's

processor
○ Is used to supply operands to the ALU and store the

results of the ALU operations

● Control Unit (CU)
○ Is in charge of orchestrating fetching from memory /

decoding / execution of instructions etc.

6

* Image taken from [1]

* Schematic representation of an ALU

https://upload.wikimedia.org/wikipedia/commons/0/0f/ALU_block.gif

HSF-India HEP Software workshop - Introduction to GPU programming - Charis Kleio Koraka - December 20th 2023

How does a CPU work ? (2)

CPUs are implemented on integrated circuit (IC)
microprocessors :

● A single IC chip can have one or more CPU
cores

● Microprocessor chips with multiple CPUs are
multi-core processors

● Processor cores can also be multithreaded to
create additional virtual CPUs

7

CU ALU

REGISTERS
Input Output

Schematic representation of principal
components that form a CPU

Main memory

Image taken from [1]

https://en.wikipedia.org/wiki/Multi-core_processor
https://en.wikipedia.org/wiki/Multithreading_(computer_architecture)
https://www.researchgate.net/figure/Diagram-of-quad-core-processor-architecture_fig1_283524282

HSF-India HEP Software workshop - Introduction to GPU programming - Charis Kleio Koraka - December 20th 2023

How are hardware accelerators used?
● In accelerated computing we take the

compute intensive parts of the application
code and parallelize that for execution on
e.g. a GPU
○ Typically integer or floating-point

mathematical operations

● The remainder of the code (usually the vast
majority) remains on the CPU
○ The part of code that remains on the

CPU is ideally serial code

● Data between the CPU and the accelerator
has to be transferred

8Image source [i]

https://youtu.be/KgMJzmqenuc

HSF-India HEP Software workshop - Introduction to GPU programming - Charis Kleio Koraka - December 20th 2023

Heterogeneous computing

● Heterogeneous computing involves using
multiple different types of processors to
accomplish a task

● Code can run on more than one platform
concurrently

● A heterogeneous system can consist of :
○ Different types of CPUs (i.e. combine

compute powerful with less compute
powerful but more power efficient CPU
cores)

○ Hardware accelerators

9Image source [i]

https://www.routledgehandbooks.com/doi/10.1201/9780429399602-3

HSF-India HEP Software workshop - Introduction to GPU programming - Charis Kleio Koraka - December 20th 2023

Some types of hardware accelerators (1)
● GPU (Graphic Processing Unit)

○ Initially developed for graphics processing

○ Optimized for parallel processing of floating-point
operations & used in a variety of tasks

● FPGA (Field-Programmable Gate Array)
○ Integrated circuit (IC) configurable by the user and

provides interface flexibility

○ FPGAs can be reprogrammed to suit the needs of the
application or required functionality

10

GPUs

FPGAs

Image sources [i] ,[ii]

https://www.pny.com/nvidia-tesla-t4
https://www.xilinx.com/products/silicon-devices/fpga/virtex-ultrascale-plus-vu23p.html

HSF-India HEP Software workshop - Introduction to GPU programming - Charis Kleio Koraka - December 20th 2023

Some types of hardware accelerators (2)
● ASIC (Application-Specific Integrated Circuit)

○ IC chip customized for a particular use

○ i.e. lower precision and/or optimised memory usage to
maximize throughput

● TPU (Tensor Processing Unit)
○ Optimised to perform matrix-multiplication operations /

used in e.g. NN and RF training

● VPU (Vision Processing Unit)
○ Used to accelerate machine vision algorithms, i.e. CNNs ,

AI etc.

11

TPUs

VPUs

ASIC

Image sources [i] , [ii], [iii]

https://en.wikipedia.org/wiki/Application-specific_integrated_circuit
https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.forbes.com%2Fsites%2Fmoorinsights%2F2017%2F04%2F13%2Fgoogles-tpu-for-ai-is-really-fast-but-does-it-matter%2F&psig=AOvVaw0KPs-PQpzkwCZdxCrwrTcT&ust=1674834694066000&source=images&cd=vfe&ved=0CBAQjRxqFwoTCLjz7snL5fwCFQAAAAAdAAAAABAE
https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.ieiworld.com%2F__LandingPage%2Fmustang-v100%2F&psig=AOvVaw2CxUskGlV0TGE5T38pjgL8&ust=1674834748512000&source=images&cd=vfe&ved=0CBAQjRxqFwoTCOiF6ePL5fwCFQAAAAAdAAAAABAE

The GPU

12

HSF-India HEP Software workshop - Introduction to GPU programming - Charis Kleio Koraka - December 20th 2023

The Graphic Processing Unit (GPU)
GPUs are similar to CPUs :

● Silicon based micro-processor that contain cores, registers, memory, and
other components.

But also very different :

● Many-core processor
● Follows the Single instruction, multiple threads (SIMT) execution

model
○ Asynchronous programming model where threads are not executed

in lockstep
● GPU acceleration emphasizes on :

○ High data throughput and massive parallel computing: a GPU
consist of hundreds of cores performing the same operation on
multiple data items in parallel.

13Image sources [i],[ii]

https://www.nvidia.com/en-us/design-visualization/desktop-graphics/
https://www.intel.com/content/www/us/en/newsroom/news/introducing-intel-data-center-gpu-flex-series.html#gs.o9iafq

HSF-India HEP Software workshop - Introduction to GPU programming - Charis Kleio Koraka - December 20th 2023

Multi-core vs many-core architectures

Multi-core processors

● Built on a single IC with two or more
processing units (cores)

● Emphasis on high single-thread
performance

● Better latency
● Can be complemented by a many-core

system

14

Many-core processors

● Much higher degree of parallelism
compared to a multi-core processors

● Emphasis on maximizing throughput
● Lower single-threaded performance and

worse latency compared to multi-core
processors

HSF-India HEP Software workshop - Introduction to GPU programming - Charis Kleio Koraka - December 20th 2023

Why GPUs?
● Mooreʼs law states that the

number of transistors in a
dense IC doubles every ~2
years.

● Since ~2010 there seems to be
a plateauing in single- thread
performance

● Gains expected through
exploiting parallelization

15

Image source [1]

Number of
cores has
started to
increase

https://www.karlrupp.net/wp-content/uploads/2018/02/42-years-processor-trend.png

HSF-India HEP Software workshop - Introduction to GPU programming - Charis Kleio Koraka - December 20th 2023

The NVidia GPU architecture

16

● The GPU architecture is built around a
scalable array of Streaming
Multiprocessors (SM).

● Each SM in a GPU is designed to
support concurrent execution of
hundreds of threads

Image source [3]

HSF-India HEP Software workshop - Introduction to GPU programming - Charis Kleio Koraka - December 20th 2023

The NVidia GPU architecture

17

● The GPU architecture is built around a
scalable array of Streaming
Multiprocessors (SM).

● Each SM in a GPU is designed to
support concurrent execution of
hundreds of threads

SM

Image source [3]

HSF-India HEP Software workshop - Introduction to GPU programming - Charis Kleio Koraka - December 20th 2023

The NVidia GPU architecture

18

● The GPU architecture is built around a
scalable array of Streaming
Multiprocessors (SM).

● Each SM in a GPU is designed to
support concurrent execution of
hundreds of threads

PCIe (Peripheral Component
Interconnect Express): Can be
used for connecting GPU to host
CPU

NVlink : Can be used to
connect to additional GPUs

SM

Image source [3]

HSF-India HEP Software workshop - Introduction to GPU programming - Charis Kleio Koraka - December 20th 2023

The Streaming Multiprocessor

19Image source [3]

The SM consists of :

● Execution cores
○ e.g. single precision floating-point, special

function units etc.

HSF-India HEP Software workshop - Introduction to GPU programming - Charis Kleio Koraka - December 20th 2023

The Streaming Multiprocessor

20Image source [3]

The SM consists of :

● Execution cores
○ e.g. single precision floating-point, special

function units etc.
● Schedulers for warps

○ These are used for issuing instructions to
warps based on a particular scheduling
policies.

HSF-India HEP Software workshop - Introduction to GPU programming - Charis Kleio Koraka - December 20th 2023

The Streaming Multiprocessor

21Image source [3]

The SM consists of :

● Execution cores
○ e.g. single precision floating-point, special

function units etc.
● Schedulers for warps

○ These are used for issuing instructions to
warps based on a particular scheduling
policies.

● Registers
○ fast on-chip memory used to store operands

for the operations executed by the GPU cores
● Caches

○ Intermediate high-speed storage resources
between the processor and memory

○ L1/constant/texture cache, Shared memory

HSF-India HEP Software workshop - Introduction to GPU programming - Charis Kleio Koraka - December 20th 2023

Hardware to software mapping

22

Hardware Software

● A scalar processor or CUDA core is
equivalent to a software thread

● Scalar processors are grouped into a SM
● Each execution of a GPU function is done

concurrently on a number of threads referred
to as a thread block

● Each thread block is executed by one SM and
cannot be migrated to other SMs in GPU

● The set of thread blocks executing the GPU
function is called a grid.

● In CUDA terminology the GPU is referred to as
the device

Image source [2]

HSF-India HEP Software workshop - Introduction to GPU programming - Charis Kleio Koraka - December 20th 2023

Memory hierarchy of the GPU

23Image source [1]

On-chip
Accesses by a single thread

Registers

HSF-India HEP Software workshop - Introduction to GPU programming - Charis Kleio Koraka - December 20th 2023

Memory hierarchy of the GPU

24Image source [1]

On-chip
Accesses by a single thread

On-chip
Accesses by all threads in block

Registers

L1 shared

HSF-India HEP Software workshop - Introduction to GPU programming - Charis Kleio Koraka - December 20th 2023

Memory hierarchy of the GPU

25Image source [1]

On-chip
Accesses by a single thread

On-chip
Accesses by all threads in block

Registers

L1 shared

Off-chip
Read-only

Constant/
texture

HSF-India HEP Software workshop - Introduction to GPU programming - Charis Kleio Koraka - December 20th 2023

Memory hierarchy of the GPU

26Image source [1]

On-chip
Accesses by a single thread

On-chip
Accesses by all threads in block

Registers

L1 shared

Off-chip
Read-only

Constant/
texture

Off-chip
Accesses by all threads all blocks

L2 Cache

HSF-India HEP Software workshop - Introduction to GPU programming - Charis Kleio Koraka - December 20th 2023

Memory hierarchy of the GPU

27Image source [1]

On-chip
Accesses by a single thread

On-chip
Accesses by all threads in block

Registers

L1 shared

Off-chip
Read-only

Constant/
texture

Off-chip
Accesses by all threads all blocks

L2 Cache

DRAM / large
Accessed by device & host

Global

HSF-India HEP Software workshop - Introduction to GPU programming - Charis Kleio Koraka - December 20th 2023

CPU vs GPU - overview of main differences

28

CPU
● ~O(10) powerful cores

○ Larger instruction set
● Low latency
● Serial processing
● Complex operations
● Higher clock speeds

GPUs
● ~O(1000) of less powerful cores

○ Smaller instruction set
● High throughput
● Parallel processing
● Simple operations
● Better per-watt performance

Image source [4]

HSF-India HEP Software workshop - Introduction to GPU programming - Charis Kleio Koraka - December 20th 2023

Performance comparison of CPUs and GPUs (1)

FLOPS : Floating-Point Operations per
Second

● Measure of computing performance
useful in fields that require
floating-point calculations (such as
HEP)

● GPUs can deliver more FLOPS
compared to CPUs

29Image source [i]

https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/

HSF-India HEP Software workshop - Introduction to GPU programming - Charis Kleio Koraka - December 20th 2023

Performance comparison of CPUs and GPUs (2)

FLOPS per Watt :

● Rate of floating-point operations
performed per watt of energy consumed

Important since power consumption is limiting
factor in hardware manufacturing/usage:

● Peak performance constrained by the
amount of power it can draw and the
amount of heat it can dissipate

30Image source [i]

https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/

GPUs in High Energy Physics

31

HSF-India HEP Software workshop - Introduction to GPU programming - Charis Kleio Koraka - December 20th 2023

Computing needs in HEP

● Event generation

● Simulation

● Event reconstruction

● Event post-processing

● Data analysis

32

[link] [link]

https://twiki.cern.ch/twiki/bin/view/CMSPublic/CMSOfflineComputingResults
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/UPGRADE/CERN-LHCC-2022-005/

HSF-India HEP Software workshop - Introduction to GPU programming - Charis Kleio Koraka - December 20th 2023

How can GPUs help?

● Event generation

● Simulation

● Event reconstruction

● Event post-processing

● Data analysis

33

- GPU enabled event generator i.e. Madgraph
[i]

https://cds.cern.ch/record/2774080/files/2106.12631.pdf

HSF-India HEP Software workshop - Introduction to GPU programming - Charis Kleio Koraka - December 20th 2023

How can GPUs help?

● Event generation

● Simulation

● Event reconstruction

● Event post-processing

● Data analysis

34

- GPU based Geant4 application (i.e. AdePT)
[i]

- AI/ML enabled Fast Simulation (i.e.
AltFast3 in ATLAS [ii] , DC-GAN in ALICE [iii])

https://indico.cern.ch/event/855454/contributions/4605037/attachments/2355172/4019147/AdePT-ACAT2021.pdf
https://arxiv.org/pdf/2109.02551.pdf
https://indico.cern.ch/event/727112/contributions/3114918/attachments/1707466/2751621/FastSimML-23Geant4CollaborationMeeting.pdf

HSF-India HEP Software workshop - Introduction to GPU programming - Charis Kleio Koraka - December 20th 2023

How can GPUs help?

● Event generation

● Simulation

● Event reconstruction

● Event post-processing

● Data analysis

35

- Track reconstruction, primary vertex
reconstruction, raw data unpacking,
clustering etc.

- Various efforts in different experiments
(Patatrack track reconstruction [i], Allen
project [ii], ALICE TPC track reconstruction
[iii] etc.)

https://www.frontiersin.org/articles/10.3389/fdata.2020.601728/full
https://cds.cern.ch/record/2699553/files/vom_Bruch_Allen_chep2019%2004.11.pdf
https://arxiv.org/pdf/1712.09430.pdf

HSF-India HEP Software workshop - Introduction to GPU programming - Charis Kleio Koraka - December 20th 2023

How can GPUs help?

● Event generation

● Simulation

● Event reconstruction

● Event post-processing

● Data analysis

36

- Training and inference of ML models
- Perform HEP analysis using columinar

analysis paradigm tools (i.e. coffea [i])

https://coffeateam.github.io/coffea/

Introduction to CUDA

37

HSF-India HEP Software workshop - Introduction to GPU programming - Charis Kleio Koraka - December 20th 2023

The CUDA programming model
CUDA → Compute Unified Device Architecture.

● It is an extension of C/C++ programming
● Developed by Nvidia and is used to develop applications executed on NVidia GPUs

To execute any CUDA program, there are three main steps:

● Copy the input data from CPU or host memory to the device memory
● Execute the CUDA program
● Copy the results from device memory to host memory

38

HSF-India HEP Software workshop - Introduction to GPU programming - Charis Kleio Koraka - December 20th 2023

nvidia-smi
nvidia-smi: NVIDIA System Management Interface program

● Command line utility
● Aids in the management and monitoring of NVIDIA GPU devices

39

Click on the following link to access a GPU
https://binderhub.ssl-hep.org/v2/gh/research-software-collaborations/courses-hsf-india-december2023/gpu_onlycudagpu_true

Click on the Terminal icon (will look like this →)

Then type the following in the terminal:
nvidia-smi
What do you see ? Let’s now try running a small utility script :
cd hsf-india-gpus
nvcc deviceInfo.cu -o deviceInfo
./deviceInfo
What do you see now?

Lets try this out!

https://binderhub.ssl-hep.org/v2/gh/research-software-collaborations/courses-hsf-india-december2023/gpu_onlycudagpu_true

HSF-India HEP Software workshop - Introduction to GPU programming - Charis Kleio Koraka - December 20th 2023

nvidia-smi
nvidia-smi: NVIDIA System Management Interface program

● Command line utility
● Aids in the management and monitoring of NVIDIA GPU devices

40

Click on the following link to access a GPU
https://binderhub.ssl-hep.org/v2/gh/research-software-collaborations/courses-hsf-india-december2023/gpu_onlycudagpu_true

Click on the Terminal icon (will look like this →)

Then type the following in the terminal:
nvidia-smi
What do you see ? Let’s now try running a small utility script :
cd hsf-india-gpus
nvcc deviceInfo.cu -o deviceInfo
./deviceInfo
What do you see now?

Lets try this out!

Can you answer some questions?
● How many devices are found?
● What type of GPUs are they?
● How many SMs per device?
● What is the warp size?
● How many threads are allowed per block?

https://binderhub.ssl-hep.org/v2/gh/research-software-collaborations/courses-hsf-india-december2023/gpu_onlycudagpu_true

HSF-India HEP Software workshop - Introduction to GPU programming - Charis Kleio Koraka - December 20th 2023

1. Copy data for host to device

41Image source [1]

HSF-India HEP Software workshop - Introduction to GPU programming - Charis Kleio Koraka - December 20th 2023

2. Execute the CUDA program

42Image source [1]

HSF-India HEP Software workshop - Introduction to GPU programming - Charis Kleio Koraka - December 20th 2023

3. Copy data from device back to host

43Image source [1]

HSF-India HEP Software workshop - Introduction to GPU programming - Charis Kleio Koraka - December 20th 2023

Threads & blocks
● In CUDA, built-in variables are available in order to

express threads and blocks :
○ threadIdx & blockIdx

● The variables have 3-dimensional indexing & provide a
natural way to express elements in vectors and matrices
:

○ threadIdx.x , threadIdx.y , threadIdx.z

● CUDA architecture limits the numbers of threads per
block (1024 threads per block limit).

● The dimension of the thread block is accessible within
the kernel through the built-in blockDim variable.

44Image source [1],[2]

HSF-India HEP Software workshop - Introduction to GPU programming - Charis Kleio Koraka - December 20th 2023

Indexing using blockIdx and threadIdx
● The threadIdx & blockIdx variables can be used to express the unique index of an element in an array/matrix

etc.
● Assuming that each block consists of a number of M threads :

○ index = threadIdx.x + blockIdx.x * M;

45Image source [1]

HSF-India HEP Software workshop - Introduction to GPU programming - Charis Kleio Koraka - December 20th 2023

Indexing using blockIdx and threadIdx
● The threadIdx & blockIdx variables can be used to express the unique index of an element in an array/matrix

etc.
● Assuming that each block consists of a number of M threads :

○ index = threadIdx.x + blockIdx.x * M;

46Image source [1]

Q: What is the index of this element??

HSF-India HEP Software workshop - Introduction to GPU programming - Charis Kleio Koraka - December 20th 2023

Warps
● Within a thread block, threads are executed in

groups → Warps
● A warp is an entity of 32 threads on Nvidia GPUs
● If the block size is not divisible by 32, some of the

threads in the last warp will remain idle :
○ block size should be chosen to be a

multiple of the warp size
● Threads in the same warp are processed

simultaneously

47Image source [2]

HSF-India HEP Software workshop - Introduction to GPU programming - Charis Kleio Koraka - December 20th 2023

CUDA kernel

48

● CUDA kernel is a function that gets executed on the GPU
● The kernel expresses the portion of the application that is

parallelizable
○ It will be executed multiple times in parallel by

different CUDA threads

Image source [4]

HSF-India HEP Software workshop - Introduction to GPU programming - Charis Kleio Koraka - December 20th 2023

CUDA function declarations

49

Declaration Callable from: Executed on:

_ _global_ _ host device

_ _device_ _ device device

_ _host_ _ host host

● _ _global_ _ keyword defines a kernel function:
○ Is launched by host and executed on the device
○ Must return void

● _ _device_ _ and _ _host_ _ can be used together
● _ _host_ _ declaration, if used alone, can be omitted

HSF-India HEP Software workshop - Introduction to GPU programming - Charis Kleio Koraka - December 20th 2023

Launching a CUDA kernel
● Letʼs assume we have the following kernel :

__global__ void mykernel() {
…Do something…

}

● How do we launch it?

myKernel<<<nBlocks,nThreads>>>();

● The above command will launch the kernel with nBlocks, each of which has nThreads
● The kernel is executed multiple times concurrently by different threads
● The total number of invocations of the kernel body is now nBlocks * nThreads.

This is the block dimension i.e. the
number of threads within a block

This is the grid dimension i.e. the number of
blocks that will be launched

50

HSF-India HEP Software workshop - Introduction to GPU programming - Charis Kleio Koraka - December 20th 2023

Memory management
● The host and device have their own separate memory:

○ Device pointers point to GPU memory
○ Host pointers point to CPU memory

● CUDA kernels operate out of device memory
● CUDA provides functions to allocate device memory, release device memory, and transfer

data between the host memory and device memory :

51

cudaMalloc(&ptr, size_in_bytes_to_allocate) cudaFree(ptr)

cudaMemcpy(destination_ptr,source_ptr, size_in_bytes, direction)

HSF-India HEP Software workshop - Introduction to GPU programming - Charis Kleio Koraka - December 20th 2023

Memory management
● Host pointers :

○ Typically not passed to device code
○ Typically not dereferenced in device code

● Device pointers :
○ Typically passed to device code
○ Typically not dereferenced in host code

For transfers between host and device memory the
direction can be :

● Copying data from CPU to GPU
● Copying data from GPU to CPU

52

Let’s take a
look at the
syntax of
cudamalloc

HSF-India HEP Software workshop - Introduction to GPU programming - Charis Kleio Koraka - December 20th 2023

Memory management
● Host pointers :

○ Typically not passed to device code
○ Typically not dereferenced in device code

● Device pointers :
○ Typically passed to device code
○ Typically not dereferenced in host code

For transfers between host and device memory the
direction can be :

● Copying data from CPU to GPU
● Copying data from GPU to CPU

53

Let’s take a
look at the
syntax of
cudamalloc

Remember the order for copying variables
from host ←→ device!

HSF-India HEP Software workshop - Introduction to GPU programming - Charis Kleio Koraka - December 20th 2023

Synchronization
● CUDA kernel calls are asynchronous :

○ Once the kernel is launched the main program
that is executed on the CPU continues normally !

● Additionally, execution order of blocks on a SMs is
arbitrary

○ We need a way to synchronise!

● We can call CudaDeviceSynchronize() from host

○ blocks the CPU execution until all work launched
on the device has finished.

● Includes both:
○ kernel launches
○ memory copies

54

Grid level synchronization

HSF-India HEP Software workshop - Introduction to GPU programming - Charis Kleio Koraka - December 20th 2023

Synchronization
For each kernel launch with N threads/block & M blocks :

● Execution order of threads within one block is arbitrary :
○ Only exception are threads in the same warp which

are processed simultaneously
● We might have a problem, where we require all threads in a

specific block to have completed execution of a specific
task before continuing the next task

● To synchronize threads within one block one can call
__syncthreads() within the kernel

55

Block level synchronization

HSF-India HEP Software workshop - Introduction to GPU programming - Charis Kleio Koraka - December 20th 2023

Atomic operations

● Useful when modifying the same value in memory from different
threads :

○ Are used to prevent race conditions in multithreaded applications
○ Read-modify-write cannot be interrupted

■ Appear to be one operation
● Atomics are special hardware instruction on NVIDIA GPUs e.g.:

○ atomicAdd/Sub (Add or subtract)
■ e.g. syntax : atomicAdd(int* address, int val);

○ atomicMax/Min (Find max or min)
○ atomicExch/CAS (Swap or conditionally swap variables)

■ e.g. syntax : atomicCAS (&addr, compare, value)
○ atomicAnd/Or/Xor (bitwise operations)

○ …

56

A[i]

SumA[i]

HSF-India HEP Software workshop - Introduction to GPU programming - Charis Kleio Koraka - December 20th 2023

Adding elements in a vector

Letʼs start by writing a CUDA kernel that calculated the sum of the
elements of a vector :

__global__ void add_array(float* A, float* sum) {
 int idx = threadIdx.x + blockIdx.x * blockDim.x;
 if (idx < N) {
 *sum +=A[idx];
 }
}

● There are 3 instructions that will be executed :
○ Load the value of A for each thread
○ Read the value of c
○ Modify the value of c

57

A[i]

SumA[i]

HSF-India HEP Software workshop - Introduction to GPU programming - Charis Kleio Koraka - December 20th 2023

Adding elements in a vector

Letʼs start by writing a CUDA kernel that calculated the sum of the
elements of a vector :

__global__ void add_array(float* A, float* sum) {
 int idx = threadIdx.x + blockIdx.x * blockDim.x;
 if (idx < N) {
 *sum +=A[idx];
 }
}

● There are 3 instructions that will be executed :
○ Load the value of A for each thread
○ Read the value of c
○ Modify the value of c

58

A[i]

SumA[i]

The behaviour of this kernel will be unpredictable!
The read/writes can happen in random orders.
The sum might be incorrect!!!

HSF-India HEP Software workshop - Introduction to GPU programming - Charis Kleio Koraka - December 20th 2023

Adding elements in a vector

Using atomicAdd to sum the vector elements :

__global__ void add_array(float* A, float* sum) {

 int idx = threadIdx.x + blockIdx.x * blockDim.x;

 if (idx < N) {

 atomicAdd(sum,A[idx]);

 }

}

59

A[i]

SumA[i]

Each read-modify-write access cannot
be interrupted

Now the sum will be correct!!

HSF-India HEP Software workshop - Introduction to GPU programming - Charis Kleio Koraka - December 20th 2023

Putting together a CUDA program
The main components of a CUDA program are :

● Declarations of functions :
○ These can be __host__ / __global__ /

__device__ functions

● Copying data to/from host :
○ Use cudaMalloc / cudaMemcpy / cudaFree

● Kernel launch <<<grid size, block size >>>(<arguments>)

● Concurrency management
○ Use __syncthreads() or

CudaDeviceSynchronize()

60

HSF-India HEP Software workshop - Introduction to GPU programming - Charis Kleio Koraka - December 20th 2023

Good practices : Error handling
● Error codes can be converted to a human-readable error messages with the following CUDA run- time function:

char* cudaGetErrorString(cudaError_t error)

● A common practice is to wrap CUDA calls in utility functions that manage the error returned :

● To detect errors in a kernel launch, we can use the API call cudaGetLastError() which returns the error code for
whatever the last CUDA API call was.

cudaError_t err = cudaGetLastError();

● For errors that occurs asynchronously during the kernel launch, cudaDeviceSynchronize() has to be invoked
after the kernel in order to return any errors associated with the kernel launch.

61

HSF-India HEP Software workshop - Introduction to GPU programming - Charis Kleio Koraka - December 20th 2023

Compilation
● Compiling a CUDA program is similar to compiling a C/C++

program.
● Cuda code should be typically stored in a file with extension .cu
● NVIDIA provides a CUDA compiler called nvcc :

○ nvcc is called for CUDA parts
○ gcc is called for c++ parts
○ nvcc converts .cu files into C++ for the host system and

CUDA assembly or binary instructions for the device
● Usage :

nvcc myCudaProgram.cu -o myCudaProgram

62Image source [i]

https://www.researchgate.net/figure/CUDA-program-compilation-process-using-NVCC_fig5_321368813

Wrapping-up

63

HSF-India HEP Software workshop - Introduction to GPU programming - Charis Kleio Koraka - December 20th 2023

Summary
● Hardware accelerators are a part of everyday life and are used in heterogeneous computing systems
● GPUs emphasize on high data throughput and massive parallel computing
● GPUs have made their way into HEP and are used for many applications
● The CUDA programming model :

○ Extension of C/C++ programming developed by Nvidia and used for applications executed on Nvidia
GPUs

○ CPU and GPU system are referred to as host and device respectively.
■ The host and device have their own separate memory

○ Typically, we run serial workload on the CPU and offload parallel computation to the GPUs
■ CUDA threads are used to execute work in parallel

○ Basic CUDA syntax:
■ __global__ function declaration (kernel) is called from the host and executed on the device
■ Memory management can be performed using cudaMalloc(), cudaFree() & cudaMemcpy()
■ To launch a CUDA kernel with N blocks and M threads/block syntax is <<<N,M>>>()

64

Back-up

65

HSF-India HEP Software workshop - Introduction to GPU programming - Charis Kleio Koraka - December 20th 2023

Resources
1. NVIDIA Deep Learning Institute material link
2. 10th Thematic CERN School of Computing material link
3. Nvidia turing architecture white paper link
4. CUDA programming guide link
5. CUDA runtime API documentation link
6. CUDA profiler user's guide link

66

https://www.nvidia.com/en-us/training/
https://csc.web.cern.ch/tcsc-2022/
https://images.nvidia.com/aem-dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__ERROR.html#group__CUDART__ERROR
https://docs.nvidia.com/cuda/profiler-users-guide/#

HSF-India HEP Software workshop - Introduction to GPU programming - Charis Kleio Koraka - December 20th 2023

Flynns classification of computer architecture

● Based on the number of instruction and data streams that can be processed simultaneously, computing
systems are classified into four major categories

67

SISD
(Single

Instruction
Single Data)

MISD
(Many

Instructions
Single Data)

SIMD
(Single

Instruction
Many Data)

MIMD
(Many

Instructions
Many Data)

Instruction streams
D

at
a

st
re

am
s

i.e. single cpu-core
machine

i.e multi cpu-core
machines / grid
computing etc.

i.e. vector
processor cpus

Image source

Image source

i.e pipeline
architectures - not

commonly used

Image source

Image source

https://en.wikipedia.org/wiki/Single_instruction,_multiple_data#/media/File:SIMD2.svg
https://en.wikipedia.org/wiki/Single_instruction,_single_data#/media/File:SISD.svg
https://en.wikipedia.org/wiki/Multiple_instruction,_single_data#/media/File:MISD.svg
https://en.wikipedia.org/wiki/Multiple_instruction,_multiple_data#/media/File:MIMD.svg

HSF-India HEP Software workshop - Introduction to GPU programming - Charis Kleio Koraka - December 20th 2023

Coalesced global memory access

● Global memory loads and stores data in as few as possible
transactions → coalesced memory access

● Important performance consideration as it can affect the
time needed to access data

● Every successive 128 bytes (DRAM burst) can be accessed by
a warp

● If the data accessed by the threads in a warp are not in the
same burst section, the data access will take twice as long

68Image source [i]

https://cvw.cac.cornell.edu/gpu/coalesced

HSF-India HEP Software workshop - Introduction to GPU programming - Charis Kleio Koraka - December 20th 2023

Matrix multiplication

69

A : M * N B: N * K

Thread 1

Thread 2

Image source

https://developer.nvidia.com/teaching-kits

HSF-India HEP Software workshop - Introduction to GPU programming - Charis Kleio Koraka - December 20th 2023

Thread synchronization
● A kernel call is asynchronous with respect to the host thread :

○ After a kernel is invoked, the program returns to the host
side and continues execution.

● There are two levels of synchronization
○ Block level
○ Grid level

● To synchronize threads within one block :
○ Call __syncthreads() within the kernel code

● To synchronize threads at grid level
○ Call to CudaDeviceSynchronize()from host code.
○ Program waits until all work launched on the device has

finished.

70

HSF-India HEP Software workshop - Introduction to GPU programming - Charis Kleio Koraka - December 20th 2023

Profiling (1)
● Similarly to CPU code, GPU code can be profiled

● Goal of profiling is to identify and optimise performance
limiters.

● Common reasons for limited performance include :
○ Portions of the code that run serially on the CPU
○ Memory copies for host to device
○ Latency of launching GPU kernels
○ Uncoalesced memory accesses, lack of cache reuse, not

using shared memory, register spilling etc.
○ Low arithmetic intensity (operations computed per byte

accessed from memory)

71Image source [1]

HSF-India HEP Software workshop - Introduction to GPU programming - Charis Kleio Koraka - December 20th 2023

Profiling (2)
● Many profiling tools exist. Some commonly used ones include
● nsys :

○ Command line profiler for CUDA applications
○ Results can be saved for later viewing by the Visual

Profiler.
● nvvp / ncu :

○ Nvidia Visual Profiler, Nsight Compute
○ Interactive kernel profilers for CUDA applications.
○ Provide detailed performance metrics and API

debugging via a user interface and command line tool.

72Image source [6]

