
Profiling and Energy Estimation of ML-based
compression algorithm (Baler) using HEP data

Leonid Didukh 09.10.2023
Mentor: Caterina Doglioni

1. Motivation for the profiling and improving energy
consumption of AI (green AI)

2. Results of profiling on training
3. Energy Meter report:

a. Zeus-ML
b. CodeCarbon
c. Eco2AI

4. How to speed up the training and reduce the energy
cost?

Outline:

● With the growing size of DNN architecture and data the
number of the operation is increasing as well therefore
the training and inference consumes more electricity.

● Profiling can speed up the software execution
● It can also help us:

○ Reduce the cost of execution
○ Reduce the CO(2) emission

Why to do computational and energy profiling:

Dataset and Model

● Baler - Machine Learning Based Compression of Scientific Data
● It utilize the autoencoder architecture in order to provide the

compressed data.
● Currently there are several benchmarks for the HEP and CFD.
● It provides the interface for the compression and decompression of data

https://arxiv.org/abs/2305.02283

Dataset and Model

Baler -- Machine Learning Based Compression of Scientific
Data https://arxiv.org/abs/2305.02283

https://arxiv.org/abs/2305.02283

1. 1000 epoch of training
2. small hep dataset: 1 file of

CMS open data
3. Batch size: 512
4. Optimizer
5. Hardware:

a. Intel(R) Xeon(R) Silver
b. Tesla T4

Setup:

GPU execution

The GPU Specification(Source)

https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-t4/t4-tensor-core-datasheet-951643.pdf

Result of Training:

The activation function plot and the loss dynamics
of training procedure.

Result of Training

Result of Training

Profiling Metrics

 https://jmlr.org/papers/volume21/20-312/20-312.pdf
● Wall Clock
● CPU/GPU time
● Total Time
● Number of operations:

○ MAC (Multiply–accumulate operation)

is a floating-point multiply–add

operation performed in one step,with a single rounding

○ FLOPS - floating point operation
● Memory consumption
● Energy (Joules)
● Power consumption in Watts)

https://jmlr.org/papers/volume21/20-312/20-312.pdf

Profiling the training

Training profiling:

The most expensive operation
is the the sampler

Profiling is done using cProfile
and visualized by ShakeViz

https://docs.python.org/3/library/profile.html#module-cProfile
https://jiffyclub.github.io/snakeviz/

Result of Profiling

Compression: Decompression:

Profiling the Compression/decompression

Profiling is done using Scalene
Th numpy concatenation is the most costly operation and could be optimized.

https://github.com/plasma-umass/scalene

Profiling the Compression

Profiling the Compression/decompression

Zeus-ML Energy meter

Zeus-ML Energy Meter

https://pypi.org/project/zeus-ml/
https://taikai.network/gsf/hackathons/carbonhack22/projects/cl95qxjpa70555701uhg96r0ek6/idea

Read the data from nvml
Can optimize the power level and
batch size
Cost:
Energy to Accuracy (ETA),
energy required to reach accuracy
in our case is l2 score.

TTA - Time to Accuracy
time required to reach accuracy
Optimization requires to have admin rights.

Zeus-ML Energy Meter

https://taikai.network/gsf/hackathons/carbonhack22/projects/cl95qxjpa70555701uhg96r0ek6/idea

Zeus-ML Energy Meter

One step took 6.220813512802124 s and 290.70100000000093 J on
average.
Total duration: 1.02e+02 minutes

https://taikai.network/gsf/hackathons/carbonhack22/projects/cl95qxjpa70555701uhg96r0ek6/idea

CodeCarbon Energy Meter

This energy meter provides the information about energy
consumed by RAM, CPU, GPU and CO(2) emission.

https://github.com/mlco2/codecarbon

CodeCarbon Energy Meter

One step took 5.032286106469389 s and 290.70100000000093 J on
average.
Total duration: 1.02e+02 minutes

https://codecarbon.io/

CodeCarbon Energy Meter

https://codecarbon.io/

CodeCarbon Energy Meter

https://codecarbon.io/

Code Carbon Energy Meter

0.010010516955963899 kg of CO(2) emitted during training

Code Carbon Energy Meter

Eco2AI Energy Meter

The Eco2AI is a python library for CO2 emission tracking. It monitors energy consumption of
CPU & GPU devices and estimates equivalent carbon emissions taking into account the
regional emission coefficient.

https://github.com/sb-ai-lab/Eco2AI

Eco2AI Energy Meter

1. Optimize the GPU power
2. Optimize the batch size or other hyper parameters:

a. Consider another LR Scheduler, Optimizer
b. The data loading and data copying is the most costly

operations in this framework
3. Use the jit library: numba, cupy
4. Use automatic mixed precision training
5. Use the Data parallel/model parallel strategies in case

of distributed training

How it’s possible to optimize:

https://arxiv.org/abs/1710.03740

we use automatic mixed precision training,
which switches between 32-bit and 16-bit
floating point representations during training
without sacrificing accuracy

Mixed precision training

https://arxiv.org/abs/1710.03740

https://arxiv.org/abs/1710.03740

Automatic Mixed Precision
without scaling

Total execution time:
89.0 minutes

Total execution time:
5338.941 sec

Energy:0.143103kWh

Mixed precision training

Automatic Mixed Precision
with scaling

Total execution time:
92.8 minutes

Total execution time:
5569.683 sec

Energy:0.148851kWh

Normal training

Total execution time:
1.02e+02 minutes

Total execution time:
6041.347 sec

Energy:0.21273390494325kWh

AMP can reduce the running time, but the accuracy
has to be tuned.

Mixed precision training

Conclusion

● We measured the time and operation related metrics for
training and inference.

● Measured the power consumption and CO(2) emission.
● Aprobated the AMP as a way to speed up the training

procedure and reduce energy cost.
● Results of the experiments -

https://github.com/software-energy-cost-studies/profiling

● Big thanks to Caterina Doglioni, Alexander Ekman and
Baler Collaboration

https://github.com/software-energy-cost-studies/profiling

Questions

