
The HSF Conditions Database:
Intelligent Caching

Candidate: Ernest Sorokun

Mentor: Lino Gerlach

HSF Conditions DB – Overview

Conditions Data handing is reoccurring problem w/

unique challenges

• Heterogenous data structure (a priori unknown)

• High access rates (from distributed computing)

HSF gathered experience from various experiments

• Published set of recommendations *

A reference implementation was developed **

• Separate meta-data & payloads (file catalogue)

• Already in use: sPHENIX @ BNL (~25k jobs)

• No server-side caching yet

* HSF Conditions Databases activity: https://hepsoftwarefoundation.org/activities/conditionsdb.html

** HSF Conditions Database Reference Implementation: link

https://hepsoftwarefoundation.org/activities/conditionsdb.html

Cache workflow

Add. info
frequency

request time

response

Cache cell

url

Cache

max size

Eviction policy

evict new

New request

Evict one cell

In

Cache

Update cache

Yes

• Request time

• Frequency

• Etc.

No

Cache

full?

End

No Yes

Get Cache
response

Get DB response

new new new

Classical cache strategies

FIFO: First In First Out LRU: Least Recently Used LFU: Least Frequently Used

0

1

2

3

4

evict 5

• Order for eviction is the same

as an entry order

• Insertion ordered dictionary

• Evict a cell with the oldest

request timestamp

• Request ordered dictionary

with timestamps

• Evict a cell with the lowest

request frequency

• Dictionary with request

counters

5 sec

10 min

20 min

40 min

1 h

2 h

400 Hz

250 Hz

100 Hz

40 Hz

10 Hz

5 Hz

Data example

URL’s sPHENIX

• Web server access logs from sPHENIX
• First iteration of calibrations

• Time independent

• No need of Intelligent caching

• Classic caching strategies gives 99.6%

serves from cache

• Cryogenic failure prevented next
data taking period

• Retrieve log files from other
experiments
• ALICE

• CMS

• ATLAS

• We investigate them for our research
but none of them are 1:1 comparible
to HSF Conditions DB Special thanks to:

Costin Grigoras (ALICE)

Andrea Formica (ATLAS)

Dave Dykstra (CMS)

Chris Pinkenburg (sPHENIX)

Simulated Data

• We study only the change in the minor IOV
sub-parameter

• Individual ‘requesters’ run in parallel (at least
have overlap)
• A requester never repeats a request (local

caching)

• A requester takes a fixed period (plus random

fluct.) before moving to next IOV

• Three ‘campaigns’ running in parallel:
• Data-like, 100 requesters, 1s and 2s period

• Simulation-like, 100 requesters, 2s period

• Each requester makes 100 calls
• The requesters start with random delay

• Simulate non-instant batch submission

Data-like:

Simulation:

Monitoring:

Use of classical strategies

• Cheat cache - optimal cache strategy

(theory)
• Knows all requests (even in future)

• LRU – best strategy, but still room for

improvement

• Goal: get closer to Cheat Cache's

performance using ML

All req. send to DB

Cache size = num

of categories minor

IOV (100/100)D
B

 c
al

ls

Deep Learn approach

• Input: last 100 requested minor IOV

• Hidden layers:
• Dense 16

• Dense 16

• Dense 16

• LSTM 16

• Output: probability for each of 100
minor IOVs to be in the next request

• Loss_func – categorical crossentropy

Deep Learn model

Problems

• Processing time - slow

• Needs additional memory
for processing

Evict policy

• Removes cell in the
cache with the lowest
probability to be
requested on next step

D
B

 c
al

ls

Reinforcement Learning | Q-Learning

• State Space

• Action Space

• Reward

• Q-Table

Concepts

𝑁𝑒𝑤 𝑄 𝑠, 𝑎 = 𝑄 𝑠, 𝑎 + 𝛼 𝑅 𝑠, 𝑎 + 𝛾 𝑚𝑎𝑥𝑄′ 𝑠′, 𝑎′ − 𝑄(𝑠, 𝑎)

New Q value Learning rate

Current Q value Reward

Discount rate

Max expected

future reward

Current Q value

Q-Learning for caching

𝐀𝐜𝐭𝐢𝐨𝐧𝐬:
Eviction one of the first and last two values of the

time−ordered cache

Time Ordered Dict Cache

Oldest request Newest request

𝑐𝑒𝑙𝑙0, 𝑐𝑒𝑙𝑙1, 𝑐𝑒𝑙𝑙2, … , 𝑐𝑒𝑙𝑙𝑛−2, 𝑐𝑒𝑙𝑙𝑛−1, 𝑐𝑒𝑙𝑙𝑛

𝐒𝐭𝐚𝐭𝐞𝐬:
Parametrized states by the combination of features

• IOV, counter, timestamp −> Boolean / discrete

• Difference of timestamps and counters shows

actuality of the value

• Difference of IOV shows backward values

D
B

 c
al

ls

Conclusion & Outlook

• Investigated request logs of condition DB of sPHENIX
• Cryogenic failure before time-dependent calibrations

• Classic caching strategies would reduce DB-calls by 99.6%

• Resorted to more complex simulated access logs

• Developed two intelligent caching methods:
• Supervised Deep Learning

• Reinforcement Learning

• Both result in fewer db-calls than classic strategies
• still have to optimize run-time and robustness

Thank you for attention

RL Features

Feature 1

𝐼𝑂𝑉0 − 𝐼𝑂𝑉1 < 𝐼𝑂𝑉𝑛−1 − 𝐼𝑂𝑉𝑛

True: 1
False: -1
Else: 0

Feature 2

True: 1
False: -1
Else: 0

Feature 3

𝑡𝑚𝐿𝑅𝑈 − 𝑡𝑚𝑎𝑣𝑔 ≤ 𝑡𝑚𝑀𝑅𝑈 − 𝑡𝑚𝑎𝑣𝑔

True: 1
False: 0

Feature 4

𝑢𝑠𝑒𝐿𝑅𝑈 − 𝑢𝑠𝑒𝑎𝑣𝑔 ≤ 𝑢𝑠𝑒𝑀𝑅𝑈 − 𝑢𝑠𝑒𝑎𝑣𝑔

True: 1
False: 0

Feature 5

𝐼𝑂𝑉𝐿𝑅𝑈 − 𝐼𝑂𝑉𝑎𝑣𝑔 ≤ 𝐼𝑂𝑉𝑀𝑅𝑈 − 𝐼𝑂𝑉𝑎𝑣𝑔

True: 1
False: 0𝐼𝑂𝑉0 − 𝐼𝑂𝑉𝑛−1 < 𝐼𝑂𝑉1 − 𝐼𝑂𝑉𝑛

All strategies

DB calls vs requests

