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HSF Conditions DB – Overview

Conditions Data handing is reoccurring problem w/ 

unique challenges

• Heterogenous data structure (a priori unknown)

• High access rates (from distributed computing)

HSF gathered experience from various experiments

• Published set of recommendations *

A reference implementation was developed **

• Separate meta-data & payloads (file catalogue)

• Already in use: sPHENIX @ BNL (~25k jobs)

• No server-side caching yet

* HSF Conditions Databases activity: https://hepsoftwarefoundation.org/activities/conditionsdb.html

** HSF Conditions Database Reference Implementation: link

https://hepsoftwarefoundation.org/activities/conditionsdb.html


Cache workflow 
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Classical cache strategies

FIFO: First In First Out LRU: Least Recently Used LFU: Least Frequently Used
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Data example

URL’s sPHENIX 

• Web server access logs from sPHENIX 
• First iteration of calibrations

• Time independent 

• No need of Intelligent caching

• Classic caching strategies gives 99.6% 

serves from cache  

• Cryogenic failure prevented next 
data taking period

• Retrieve log files from other 
experiments
• ALICE

• CMS

• ATLAS

• We investigate them for our research 
but none of them are 1:1 comparible
to HSF Conditions DB Special thanks to:

Costin Grigoras (ALICE)

Andrea Formica (ATLAS)

Dave Dykstra (CMS)

Chris Pinkenburg (sPHENIX)



Simulated Data

• We study only the change in the minor IOV 
sub-parameter

• Individual ‘requesters’ run in parallel (at least 
have overlap)
• A requester never repeats a request (local 

caching)

• A requester takes a fixed period (plus random 

fluct.) before moving to next IOV

• Three ‘campaigns’ running in parallel:
• Data-like, 100 requesters, 1s and 2s period

• Simulation-like, 100 requesters, 2s period

• Each requester makes 100 calls
• The requesters start with random delay

• Simulate non-instant batch submission

Data-like:

Simulation:

Monitoring:



Use of classical strategies

• Cheat cache - optimal cache strategy 

(theory)
• Knows all requests (even in future)

• LRU – best strategy, but still room for 

improvement 

• Goal: get closer to Cheat Cache's 

performance using ML

All req. send to DB

Cache size = num 

of categories minor 

IOV (100/100)D
B
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Deep Learn approach 

• Input: last 100 requested minor IOV

• Hidden layers:
• Dense 16 

• Dense 16 

• Dense 16 

• LSTM 16 

• Output: probability for each of 100 
minor IOVs to be in the next request

• Loss_func – categorical crossentropy

Deep Learn model

Problems

• Processing time - slow

• Needs additional memory 
for processing

Evict policy

• Removes cell in the 
cache with the lowest 
probability to be 
requested on next step
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Reinforcement Learning | Q-Learning

• State Space

• Action Space

• Reward 

• Q-Table

Concepts

𝑁𝑒𝑤 𝑄 𝑠, 𝑎 = 𝑄 𝑠, 𝑎 + 𝛼 𝑅 𝑠, 𝑎 + 𝛾 𝑚𝑎𝑥𝑄′ 𝑠′, 𝑎′ − 𝑄(𝑠, 𝑎)

New Q value Learning rate

Current Q value Reward

Discount rate

Max expected 

future reward

Current Q value



Q-Learning for caching

𝐀𝐜𝐭𝐢𝐨𝐧𝐬:
Eviction one of the first and last two values of the

time−ordered cache

Time Ordered Dict Cache

Oldest request Newest request

𝑐𝑒𝑙𝑙0, 𝑐𝑒𝑙𝑙1, 𝑐𝑒𝑙𝑙2, … , 𝑐𝑒𝑙𝑙𝑛−2, 𝑐𝑒𝑙𝑙𝑛−1, 𝑐𝑒𝑙𝑙𝑛

𝐒𝐭𝐚𝐭𝐞𝐬:
Parametrized states by the combination of features

• IOV, counter, timestamp −> Boolean / discrete

• Difference of timestamps and counters shows 

actuality of the value

• Difference of IOV shows backward values
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Conclusion & Outlook  

• Investigated request logs of condition DB of sPHENIX
• Cryogenic failure before time-dependent calibrations

• Classic caching strategies would reduce DB-calls by 99.6%

• Resorted to more complex simulated access logs

• Developed two intelligent caching methods:
• Supervised Deep Learning 

• Reinforcement Learning

• Both result in fewer db-calls than classic strategies
• still have to optimize run-time and robustness



Thank you for attention 



RL Features 

Feature 1

𝐼𝑂𝑉0 − 𝐼𝑂𝑉1 < 𝐼𝑂𝑉𝑛−1 − 𝐼𝑂𝑉𝑛

True:     1
False:   -1
Else:      0

Feature 2

True:     1
False:   -1
Else:      0

Feature 3

𝑡𝑚𝐿𝑅𝑈 − 𝑡𝑚𝑎𝑣𝑔 ≤ 𝑡𝑚𝑀𝑅𝑈 − 𝑡𝑚𝑎𝑣𝑔

True:     1
False:    0

Feature 4

𝑢𝑠𝑒𝐿𝑅𝑈 − 𝑢𝑠𝑒𝑎𝑣𝑔 ≤ 𝑢𝑠𝑒𝑀𝑅𝑈 − 𝑢𝑠𝑒𝑎𝑣𝑔

True:     1
False:    0

Feature 5

𝐼𝑂𝑉𝐿𝑅𝑈 − 𝐼𝑂𝑉𝑎𝑣𝑔 ≤ 𝐼𝑂𝑉𝑀𝑅𝑈 − 𝐼𝑂𝑉𝑎𝑣𝑔

True:     1
False:    0𝐼𝑂𝑉0 − 𝐼𝑂𝑉𝑛−1 < 𝐼𝑂𝑉1 − 𝐼𝑂𝑉𝑛



All strategies 



DB calls vs requests


