
To-Be-Recorded Analysis
In Clad. Summary

Petro Zarytskyi
Mentors: Vassil Vassilev, David Lange

1

Introduction: Automatic Differentiation
Automatic differentiation is a method of differentiation of functions expressed as procedures. It
involves breaking up the function into simple operations and applying chain rule to each one of
them. This can be done both ways: from the input to the output (forward mode) and vice versa

(reverse mode). This project focuses on the second approach which is more efficient for
computing gradients. In reverse mode, we need two passes: a forward pass to store the

intermediate values of all the variables and a backward pass to compute derivatives.

2

Introduction: Clad

Clad is an automatic differentiation Clang plugin for C++. It automatically generates code that
computes derivatives of functions given by the user.

3

A quick reminder of how TBR analysis works

DECLARED USED CHANGEDUSED CHANGED CHANGED USED

History of usage of a variable x

4.1

A quick reminder of how TBR analysis works

DECLARED USED CHANGEDUSED CHANGED CHANGED USED

History of usage of a variable x

4.2

A quick reminder of how TBR analysis works

DECLARED USED CHANGEDUSED CHANGED CHANGED USED

History of usage of a variable x

false false false falsetrue true

4.3

Overview

Modes
used for analysing
expressions and finding
used variables (data-flow)

VarData stores the information
about one variable

CFG used to handle control-flow

5

Modes

y = x * x;

marking mode

y;

no variables are changed,
therefore, the marking
mode is off

because of assignment, the
marking mode is turned on
for RHS

6

Linear analysis

y = x * x;

y = 2 * x + 3 * z;

_d_x += _d_y * x + x * _d_y;
_d_y = 0;

_d_x += 2 * _d_y;
_d_z += 3 * _d_y;
_d_y = 0;

7

Modes

y = x * x + z;

non-linear mode by default, the RHS of the
assignment operator is in
linear mode+

* z

x xx

addition is not able to
affect linearity itself

a product becomes
non-linear when both
terms are no constant

8

VarData

Stores all the necessary information
about one variable (in trivial cases, it
is represented with bool)

9

FundType VarData

double x; bool

10

ObjType VarData

struct myStruct {
 type1 a;
 type2 b;
};

x.a

myStruct x;

x.b

VarData

VarData

11

ArrType VarData

x[0]

type x[n];

x[i]

VarData

VarData

x[7] VarData

12

RefType VarData

double& x = y; clang::Expr* Y
(corresponds to y)

13

Control-flow

if (cond1) {
 ///part 1
} else {
 ///part 2
}

pre-if branch

branch1 branch2

post-if branch

14

analyzed with clang:CFG

Merging

if (cond1) {
 ///x used
} else {
 ///y used
}

pre-if branch

branch1 branch2

post-if branch

x used y used

We have to assume both x
and y were used.

15

Control-flow. Loops

while (cond) {
 ///some code
}

pre-while branch

loop body
branch

post-while branch

16

Thank you

