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Introduction



CMS data management
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A typical question that we want to answer:

. Which datasets we can delete from cache? -

Plan of the project

Collection of the data usage data

Feature Engineering

Searching for the best Machine Learning approach
Model evaluation
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Data gathering. Data structure and
Features selection



Data Extraction with Spark

Extracted columns from CRAB: Historical data taken:

O CRAB_Workflow < 2020 (01.06 - 31.12) 7 months
[ DESIRED_CMSDataset % 2021 full

d CMSSWMajorVersion % 2022 full

d CMSSWRealeaseSeries < 2023 (01.01-31.08) 8 months
A CRAB_TaskCreationDate

A CRAB_UserHN
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Primary dataset

Acquisition era

Processing string

Processing version

Data tier
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Features we tried

1. ‘Counts’ - number of tasks per dataset.

2. ‘Earliest_time’, 'Latest_time’ - first and last time when the dataset was used
(dataset usage time frame).

3. ‘UsedOrNot’' -1 or 0 based on if the dataset was used in previous month.

4. ‘Usage_n_last)month’ - sequences of frequency of data usage during n last
months (for example, if n = 4:[2, 0, 14, 4])

5. ‘Unique_user_count’ - How many different users used a particular dataset.

6. ‘PrimaryDataset’, ‘AcquisitionEra’, ‘ProcessingString’, ‘ProcessingVersion’,

‘DataTier’




Machine learning: Preprocessing

PrimaryDataset Processed_PrimaryDataset

UsedOrNot (in
pre-last month)

AcquisitionEra |Tokenizing/Embedding> Processed_AcquisitionEra | oo

Unique_user_count

DataTier Processed_DataTier
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e Tokenizer creates dictionary of elements and turns a string into a
vector of numbers.

e Embedding layers are used to map discrete tokens or integers into a
continuous vector space. They are an additional layers in ML model
that learn alongside with main layers and allow the model to capture

semantic relationships between tokens.
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Model Training and l
Performance Evaluation




Machine Learning Model Architecture and Tools

N

Model Tools:
1. Programming Language: Python
2. Libraries: TensorFlow/Keras (for model
development)
3. Other Tools: tokenizer (for word

(&

indexing)
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/ Model Training:

Optimizer: Adam

Loss Function: Binary Cross-Entropy

Metrics: Accuracy

Training on training data for 8 epochs

with a batch size of 128.
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/del Components:

Input Layers: 5

Embedding Layers: 2 (PrimaryDataset, AcquisitionEra)
Flatten Layers: 2 (Embedded PrimaryDataset and
AcquisitionEra)

Dense layers for feature transformation: 3

Activation functions: RelLU.

Output Layer: Single neuron output layer with sigmoid
activation for binary classification.
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ntips://aitlab.cern.ch/c | Take alook on everything
msdmops/CMSDataPop | we have done on our gitlab

ularity



https://gitlab.cern.ch/cmsdmops/CMSDataPopularity
https://gitlab.cern.ch/cmsdmops/CMSDataPopularity
https://gitlab.cern.ch/cmsdmops/CMSDataPopularity

Our evaluation metrics

General: o
e Precision: (True Positive)/(True Positive+False Positive). 2000
[

Recall: (True Positive)/(True Positive+False Negative).
e F1 Score: 2*(Precision*Recall/(Precision + Recall)).

True label

Tue

Specially for our data:

Predicted label

e ‘Unused, Unused’ - number of datasets that were not used in previous month and not used in

current month.
o Predicted used (Wrong)
o Predicted unused (Correct)
e ‘Unused, Used’
‘Used, Unused’
‘Used, Used'’
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Unused

Precision: 0.94 Usage in current (target) month

Recall: 0.89
F1 Score: 0.92




Caching testing



Current caching algorithm - LRU

LRU - Least Recently Used

Incoming datasets:A->B->C->B->D

Step 1 Step 2
4 N 4
Most recently used - C B
Cache size 3 B C
Least recently used o\ A




Caching with ML model

Incoming datasets:A->B->C->D->E

Predictions: Step1 Step2  Step3
s N N B

A-0.44 Highest prediction = C C C

(B: - 82; Cache size 3 B B E

5 0:69 Lowest prediction - A D B

E-0.94 - J J U
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LRU and ML model caching comparison

LRU and ML model caching comparison (cache 5000)
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LRU and ML model caching comparison (cache 20000)

If incoming dataset is in cache - we call it hit and store this event as
“True” or “1”. If dataset is not in cache - we call it miss, put this dataset in

cache while deleting some other dataset (which one to delete is decided
based on specific algorithm) and store as ‘False’ or ‘0.

Hit/miss ratio comparison we can see on plots.
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Summary



Summary

e CMS has more useful data than it can keep in the disk storage
o  When data is not present on disk it needs to be recalled from tape, which is a slow operation

e Project Objective
o Explore how well Machine Learning algorithms can predict data popularity based on the current
patterns and metadata of datasets already in use
m Primary Dataset name, Acquisition Era and Data Tier etc
e Built a model using fully connected Neural Net
o  Popularity information was extracted from user crab jobs
o Managed to achieve high Precision and Recall values using all historic data with feature embedding
and the last month of data as a target
e Tested the model in a data cache application
o Our model outperformed LRU when frequent model retraining is used
o LRU model gives a similar performance and given its simplicity is a better choice for data caching
application

More work is needed to explore full potential of this approach




Thank you for your attention!



