
Predict CMS Data Popularity to Improve Its 
Availability for Physics Analysis

Andrii Len
Taras Shevchenko National University of Kyiv

Dmytro Kovalskyi, Rahul Chauhan, Hasan Ozturk
MIT, CERN

IRIS-HEP Summer Fellowship
October 16, 2023



Introduction



CMS data management

CMS Data

Tape 
Storage

Computing 
centers disks

Users

Due to the limited disk space it is 
crucial to dynamically manage the 
data available on disk so the users 

could receive data significantly faster.

Requested data
Requested data

Quick request

Long request



A typical question that we want to answer:

➢ Collection of the data usage data
➢ Feature Engineering
➢ Searching for the best Machine Learning approach
➢ Model evaluation

Which datasets we can delete from cache?

Plan of the project



Data gathering. Data structure and 
Features selection



Data Extraction with Spark

Historical data taken:

❖ 2020 (01.06 - 31.12) 7 months
❖ 2021 full
❖ 2022 full
❖ 2023 (01.01 - 31.08) 8 months

Extracted columns from CRAB:

❏ CRAB_Workflow
❏ DESIRED_CMSDataset
❏ CMSSWMajorVersion
❏ CMSSWRealeaseSeries
❏ CRAB_TaskCreationDate
❏ CRAB_UserHN



Data structure 

Task 1

Task n

Task 2
Dataset

Version/Series

User id

Task creation date

Dataset name Data tierAcquisition eraPrimary dataset

/DoubleMuonLowMass/Run2017B-09Aug2019_UL2017-v1/AOD

Processing versionProcessing string



Features we tried

1. ‘Counts’ - number of tasks per dataset.
2. ‘Earliest_time’, ’Latest_time’ - first and last time when the dataset was used 

(dataset usage time frame).
3. ‘UsedOrNot’ - 1 or 0 based on if the dataset was used in previous month.
4. ‘Usage_n_last)month’ - sequences of frequency of data usage during n last 

months (for example, if n = 4: [2, 0, 14, 4]) 
5. ‘Unique_user_count’ - How many different users used a particular dataset.
6. ‘PrimaryDataset’, ‘AcquisitionEra’, ‘ProcessingString’, ‘ProcessingVersion’, 

‘DataTier’



Machine learning: Preprocessing

Tokenizing/Embedding

Processed_PrimaryDataset

Processed_DataTier

Processed_AcquisitionEra

UsedOrNot (in 
pre-last month)

Raw features Ready to train the 
model

PrimaryDataset

AcquisitionEra

DataTier
Unique_user_count

● Tokenizer creates dictionary of elements and turns a string into a 
vector of numbers.

● Embedding layers are used to map discrete tokens or integers into a 
continuous vector space. They are an additional layers in ML model 
that learn alongside with main layers and allow the model to capture 
semantic relationships between tokens.



Model Training and 
Performance Evaluation



Model Tools:

1. Programming Language: Python
2. Libraries: TensorFlow/Keras (for model 

development)
3. Other Tools: tokenizer (for word 

indexing)

Model Components:
1. Input Layers: 5
2. Embedding Layers: 2 (PrimaryDataset, AcquisitionEra)
3. Flatten Layers: 2 (Embedded PrimaryDataset and 

AcquisitionEra)
4. Dense layers for feature transformation: 3
5. Activation functions: ReLU.
6. Output Layer: Single neuron output layer with sigmoid 

activation for binary classification.

Model Training:
1. Optimizer: Adam
2. Loss Function: Binary Cross-Entropy
3. Metrics: Accuracy
4. Training on training data for 8 epochs 

with a batch size of 128.

Machine Learning Model Architecture and Tools

https://gitlab.cern.ch/c
msdmops/CMSDataPop

ularity

Take a look on everything 
we have done on our gitlab

https://gitlab.cern.ch/cmsdmops/CMSDataPopularity
https://gitlab.cern.ch/cmsdmops/CMSDataPopularity
https://gitlab.cern.ch/cmsdmops/CMSDataPopularity


Our evaluation metrics
General:

● Precision: (True Positive)/(True Positive+False Positive).
● Recall: (True Positive)/(True Positive+False Negative).
● F1 Score: 2*(Precision*Recall/(Precision + Recall)).

Specially for our data:

● ‘Unused, Unused’ - number of datasets that were not used in previous month and not used in 
current month. 

○ Predicted used (Wrong)
○ Predicted unused (Correct)

● ‘Unused, Used’
● ‘Used, Unused’
● ‘Used, Used’



Un
us

ed
Us

ed

Us
ag

e 
in

 p
re

vi
ou

s 
m

on
th

Usage in current (target) month

Unused Used

Predicted as 
Used:

42

Predicted as 
Used:

13

Predicted as 
Used:

276

Predicted as 
Unused:

9381

Predicted as 
Used:

609

Predicted as 
Unused:

336

Predicted as 
Unused:

80

Predicted as 
Unused:

28

Precision: 0.94

Recall: 0.89

F1 Score: 0.92



Caching testing



Current caching algorithm - LRU
LRU - Least Recently Used

Incoming datasets: A -> B -> C -> B -> D

Cache size 3
C
B
A

B
C
A

D
B
C

Most recently used

Least recently used

Step 1 Step 2 Step 3



Caching with ML model
Incoming datasets: A -> B -> C -> D -> E

Cache size 3
C
B
A

C
B
D

C
E
B

Highest prediction

Lowest prediction

Step 1 Step 2 Step 3Predictions:

A - 0.44
B - 0.87
C - 0.98
D - 0.69
E - 0.94



LRU and ML model caching comparison

If incoming dataset is in cache - we call it hit and store this event as 
“True” or “1”. If dataset is not in cache - we call it miss, put this dataset in 
cache while deleting some other dataset (which one to delete is decided 
based on specific algorithm) and store as ‘False’ or ‘0’.

Hit/miss ratio comparison we can see on plots.



Summary



Summary
● CMS has more useful data than it can keep in the disk storage

○ When data is not present on disk it needs to be recalled from tape, which is a slow operation
● Project Objective

○ Explore how well Machine Learning algorithms can predict data popularity based on the current 
patterns and metadata of datasets already in use

■ Primary Dataset name, Acquisition Era and Data Tier etc
● Built a model using fully connected Neural Net

○ Popularity information was extracted from user crab jobs
○ Managed to achieve high Precision and Recall values using all historic data with feature embedding 

and the last month of data as a target
● Tested the model in a data cache application 

○ Our model outperformed LRU when frequent model retraining is used
○ LRU model gives a similar performance and given its simplicity is a better choice for data caching 

application
● More work is needed to explore full potential of this approach



Thank you for your attention!


