AI-ML for Network Problem Identification

Mentors:

Shawn McKee (University of Michigan) Petya Vasileva (University of Michigan)

Introduction

LHC data generation

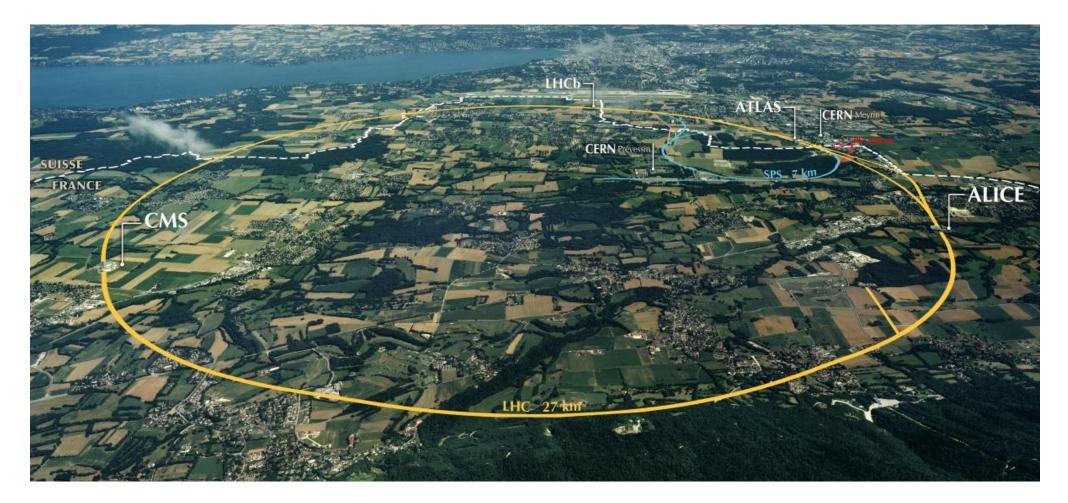
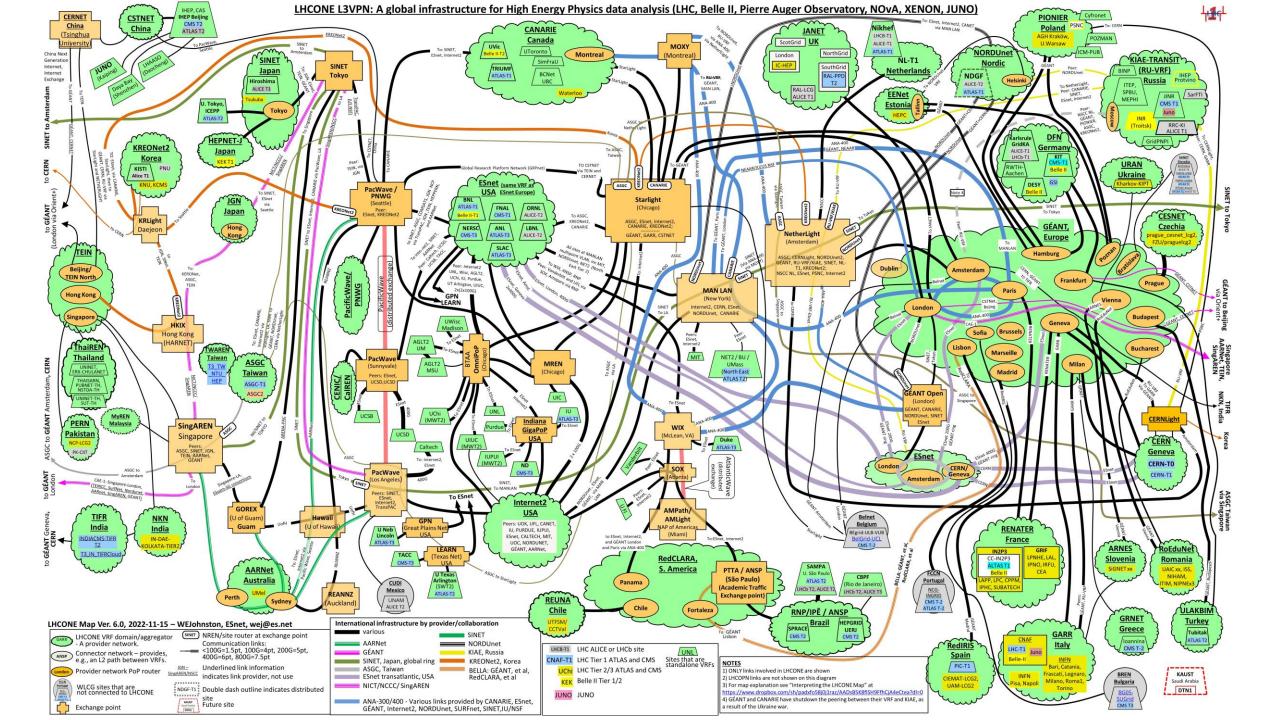



Image: CERN

Performance monitoring with perfSONAR

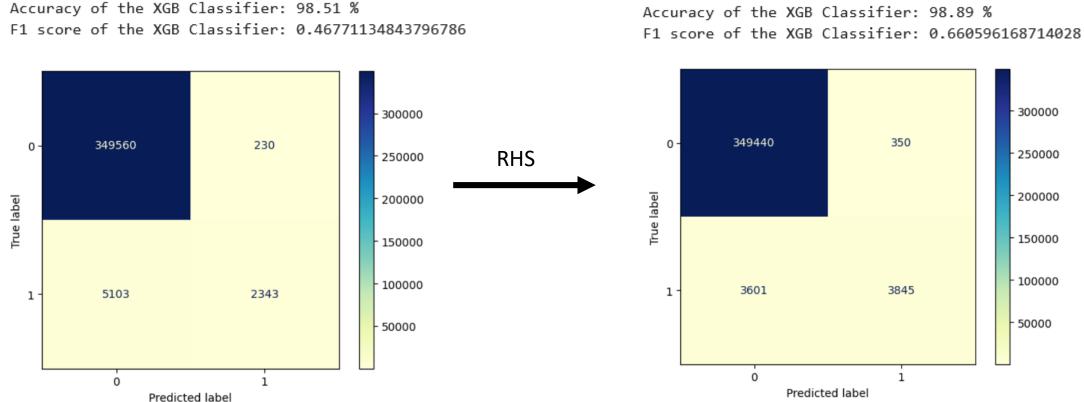
Image: Hosts location on the world map

Aggregating and analyzing the data

😽 elastic		Q Find apps, content, and more.	*/		© & MN			
E N Discover V				60 New Open Share	Alerts Inspect			
ps_throughput 🗸 🗧 🕈	Q Filter yo	our data using KQL syntax	mar 12, 2023 @ 12:00:00.	000 → Mar 17, 2023 @ 00:00:00.000	C Refresh			
Q Search field names	₹ 0	28,655 hits	Breat	k down by Select field	ې ف ا			
 Popular fields ⁽⁷⁾ push throughput 	5	1,000 800 600 400 200 0 12:00 12:00 12:00 12:00 12:00 12:00 12:00 12:00 12:00 12:00 12:00 12:00 12:00 00:00 March 13, 2023 12:00 00:00 March 14, 2023	12:00 18:00 00:00 06:00 March 15, 2023	12:00 18:00 00:00 06:00 March 16, 2023	12:00 18:00			
k dest_VO		Mar 12, 2023 @ 12:00:00.000 - Mar 17, 2023 @ 00:00:00.000 (interval: Auto - 3 hours)						
k src_VO# throughput [Gbps]		Documents Field statistics	=					
✓ Available fields ^⑦	16	1 field sorted						
k destk dest_host		st_V0 ATLAS ipv6 true MA 2001:630:6	est_host perfsonar-bandwidth.esc.qmul.a 3:3::41c5:116 push false src 2001:630: SHEF-HEP src_VO ATLAS throughput 342,25	63:3::41c5:116 src_host lcgperf.she				
 dest_production k dest_site 			o-37-00.acrc.bris.ac.uk dest_production 7 push false src 194.81.18.227 src_host					
k dest_VO ipv6 k MA			lhc-bw-01-gen-ch-v4.geant.net dest_prod onar02.datagrid.cea.fr src_production to					
MAØ push		✓ Mar 16, 2023 @ 23:59:34.000 dest 128.211.143.4 dest_host perfs	onar-cms2.itns.purdue.edu dest_producti	on true dest_site Purdue dest_VO (ε	empty) ipv6 false			
		Rows per page: 100 V		6 1	2345>			

Image: Using Elasticsearch to monitor the status of the hosts

Network problems identification for throughput measurements


Throughput alarms – dataset and one-hot encoding

	0	1	2			0	1	2	
from	1672547280000	1672547280000	1672547280000		from	1,672,547,280,000	1,672,547,280,000	1,672,547,280,00	
to	1672550880000	1672550880000	1672550880000		to	1,672,550,880,000	1,672,550,880,000	1,672,550,880,00	
ірv6	False	False	False	1 01-01 28:00	False	ipv6	0	0	
value	6938.0	3191.0	9777.0		· ·				
doc_count	1	1	04:28:00		value	6,938	3,191	9,77	
dt	2023-01-01 04:28:00	2023-01-01 04:28:00			doc_count	1	1		
ipv	ipv4	ipv4	ipv4	encoding					
src_site	SWT2_CPB	SWT2_CPB	UNKNOWN		dest_host_t2-pfsn1.jinr.ru	0	0		
src_site	SWIZ_CFD	SWIZ_CPD	ONKNOWN		dest_host_t2-pfsn2.jinr.ru	0	0		
dest_site	ATLAS GREAT LAKES TIER-2	GRIF-LPNHE	T1_US_FNAL		dest_host_t2ps- bandwidth2.physics.ox.ac.uk	0	0		
src_host	psuta02.atlas- swt2.org	psuta02.atlas-swt2.org	perfsonar.unl.edu		dest_host_tau.ijs.si	0	0		
dest_host	psmsu02.aglt2.org	perfsonar02.datagrid.cea.fr	psonar3.fnal.gov		dest_host_uct2- net2.mwt2.org	0	0		
alarm_created	0	0	0		inclaim weighting				
2 rows x 59530)2 columns				367 rows × 595393 columns				

12 rows × 595393 columns

Images: data on the throughput measurements fetched from the Elasticsearch for the period [from 2023-01-01 until 2023-05-31]

Throughput alarms – Random hyperparameters search (using f1 score)

Images: Classification reports and confusion matrices for the test data

Throughput alarms – ML analysis sitespecifically

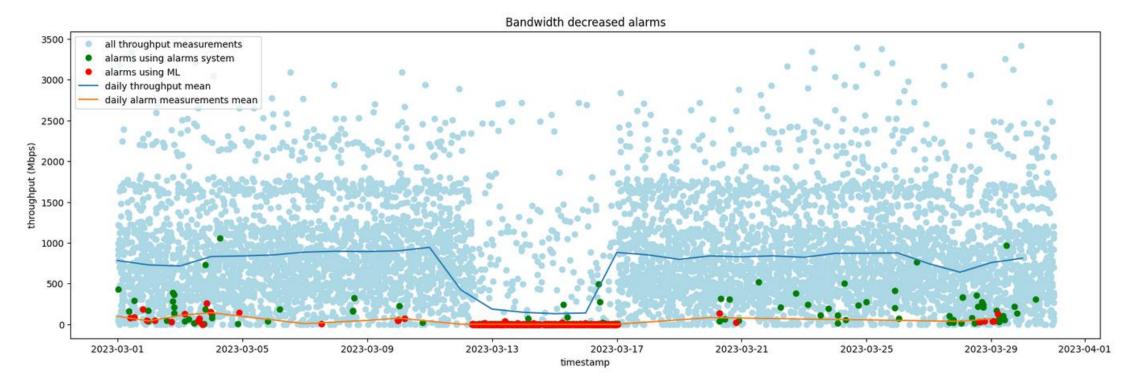


Image: TAIWAN-LCG2 site performance on the period of time where it had a known network issue

Throughput alarms – ML analysis sitespecifically

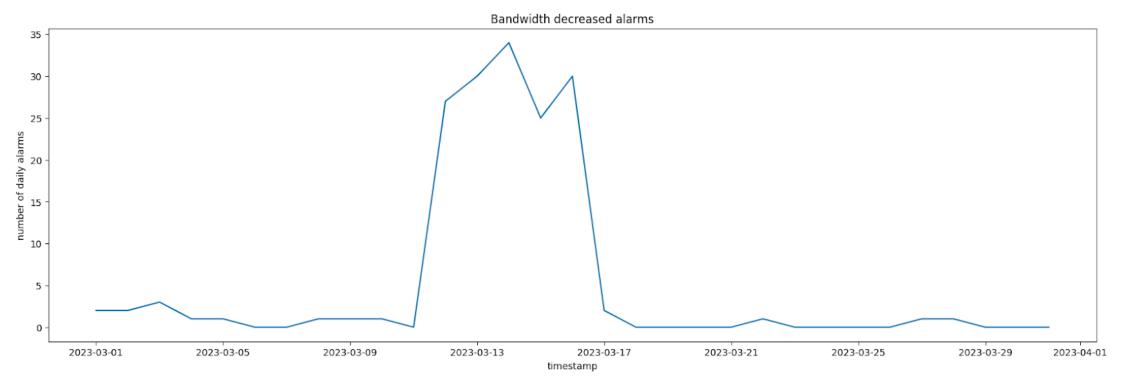


Image: TAIWAN-LCG2 site number of alarms aggregation by days

Throughput alarms – ML analysis through all sites

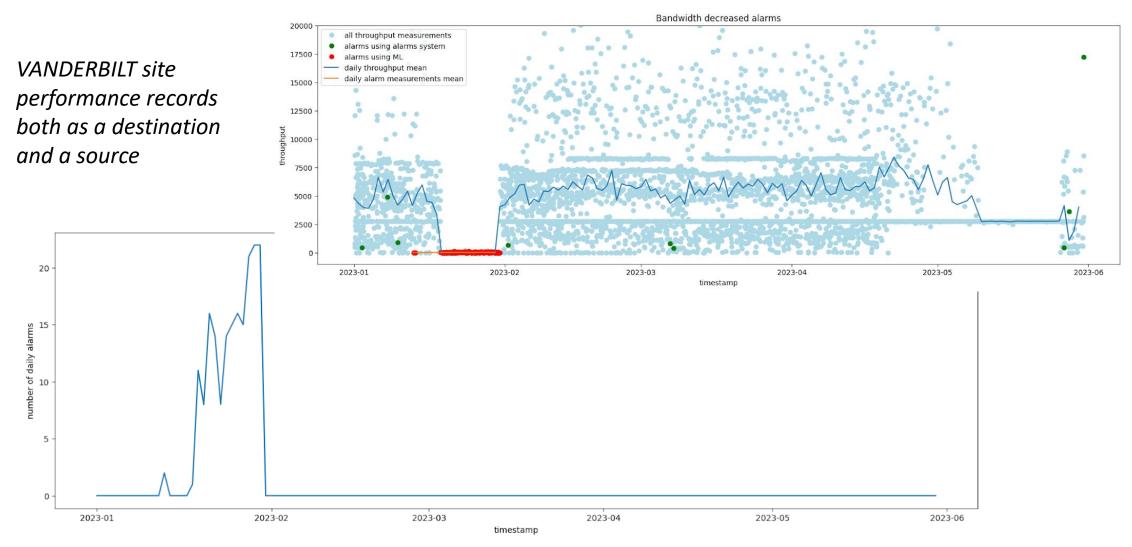

USCMS-FNAL-WC1	45 alarms at 2023-02-05	28 alarms at 2023-02-06	27 alarms at 2023-02-07	
UKI-LT2-QMUL	2 alarms at 2023-02-19	2 alarms at 2023-02-20		
TAIWAN-LCG2	64 alarms at 2023-03-14	62 alarms at 2023-03-15	62 alarms at 2023-03-16	
T2_US_CALTECH	14 alarms at 2023-02-05	17 alarms at 2023-02-06	16 alarms at 2023-02-07	
BEGRID-ULB-VUB	1 alarms at 2023-01-31	1 alarms at 2023-02-01	2 alarms at 2023-02-02	
JINR-LCG2	37 alarms at 2023-02-08	19 alarms at 2023-02-09		
VANDERBILT	15 alarms at 2023-01-25	16 alarms at 2023-01-26	15 alarms at 2023-01-27	
				22 unique sites

Diagram: Some of the 22 unique sites with 3-14 days of consecutive high number of daily alarms received from the ML analysis

Throughput alarms – ML analysis through all sites (BEGRID-ULB-VUB)

Throughput alarms – ML analysis through all sites (VANDERBILT)

Throughput alarms – ML analysis through all sites (USCMS-FNAL-WC1)

Throughput alarms – ML analysis through all sites (USCMS-FNAL-WC1)

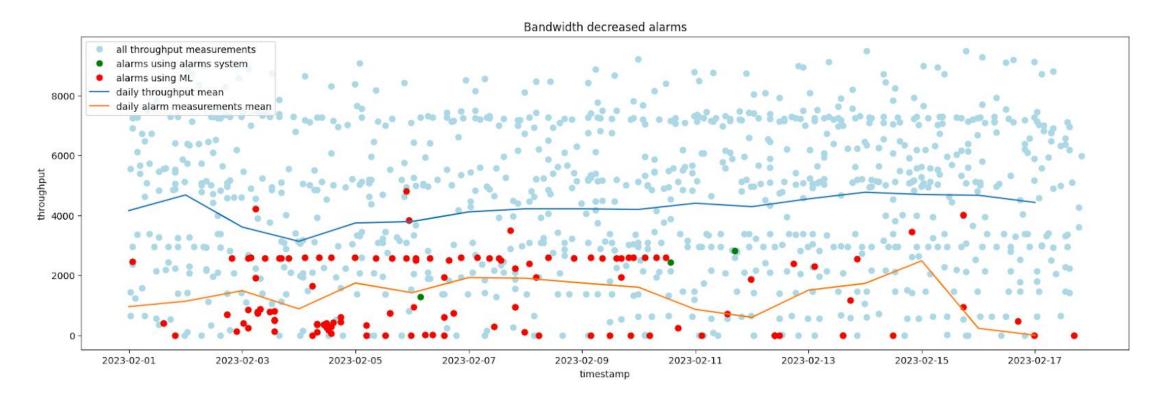


Diagram: USCMS-FNAL-WC1 site performance records as a destination ONLY

Throughput alarms – ML analysis through all sites (USCMS-FNAL-WC1)

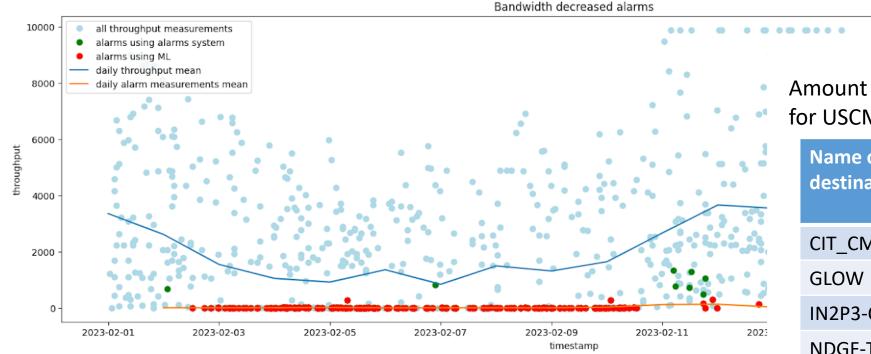


Diagram: USCMS-FNAL-WC1 site performance records as a source ONLY

Amount of source - destination pairs for USCMS-FNAL-WC1 as a source:

. .

. .

Name of the destination site	Number of unique src-dest connections
CIT_CMS_T2	47
GLOW	40
IN2P3-CC-T3	33
NDGF-T1	29
RRC-KI-T1	3
RWTH-AACHEN	1
T2_US_FLORIDA	26
TAIWAN-LCG2	13

Creating alarms for packet loss measurements

Packet loss alarms – ML analysis through all sites

USCMS-FNAL-WC1	375 alarms at 2023-02-05	399 alarms at 2023-02-06	388 alarms at 2023-02-07	
CBPF	58 alarms at 2023-03-25			
TAIWAN-LCG2	374 alarms at 2023-03-15	264 alarms at 2023-03-16		
CIT_CMS_T2	330 alarms at 2023-01-03			
GSI-LCG2	19 alarms at 2023-01-19			
SARA-MATRIX	218 alarms at 2023-04-18			

Diagram: Sites with a consecutive high number of daily alarms received from the ML analysis

Packet loss alarms – ML analysis through all sites (TAIWAN-LCG2)

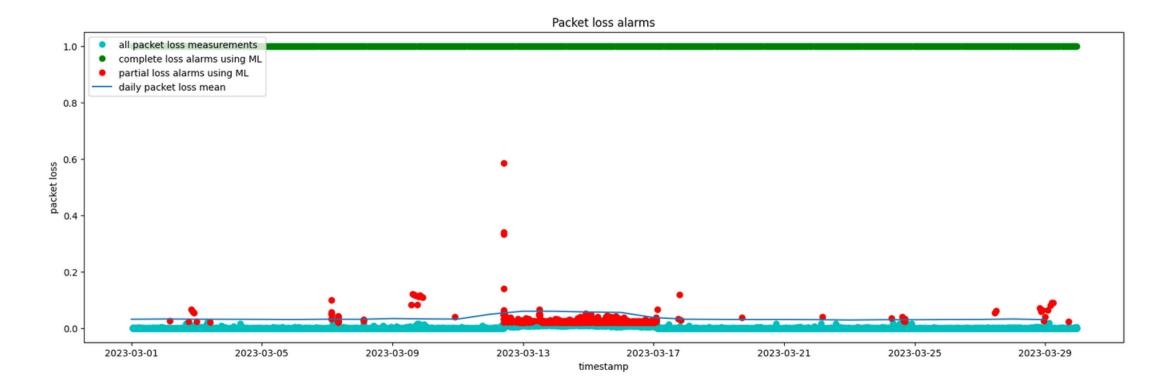


Image: TAIWAN-LCG2 site performance on the period of time where it had a known network issue

Packet loss alarms – comparison with throughput decrease alarms

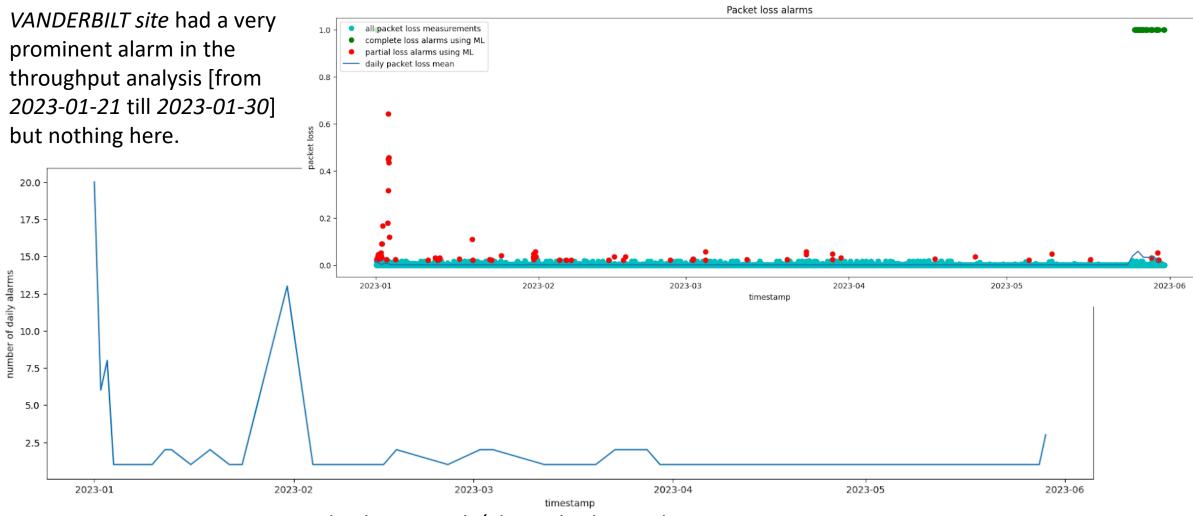
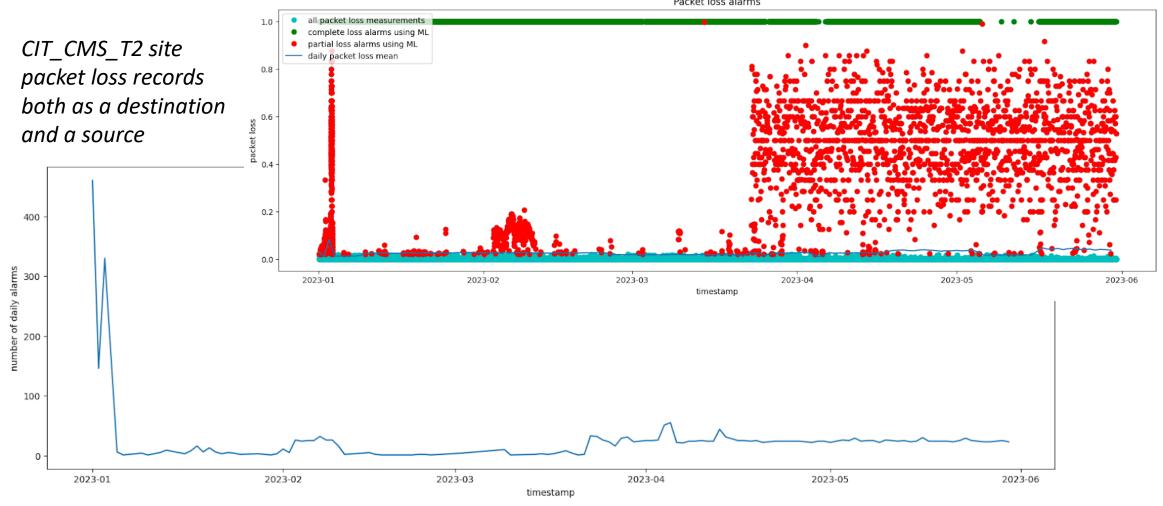



Image: VANDERBILT site packet loss records/alarms both as a destination

Packet loss alarms – comparison with throughput decrease alarms

Making the project interactive using Plotly Dash

Conclusions

- Using different techniques such as one-hot encoding suitable datasets were created from the data fetched from the Elasticsearch platform
- Using these datasets our own alarms were created using Machine Learning and existing automatic alarms system to label the faulty measurements
- Two Elasticsearch scopes were explored this way throughput and packet loss measurements
- While comparing the results from both, instead of expected correlation between high packet loss and low throughput we had some cases of low throughput present and no high packet loss alarms and vice versa

Links

• LHCONE topology -

https://twiki.cern.ch/twiki/bin/view/LHCONE/LhcOneMaps

• PerfSONAR stats -

https://stats.perfsonar.net/d/spFwAQi4z/perfsonar-public?orgId=2

- Elasticsearch data <u>link</u>
- Dash page for exploring alarms <u>https://ps-dash.uc.ssl-hep.org/search-alarms</u>

Thank you for attention!