

Studying a New Primary Vertex (PV) Identification Algorithm Within ACTS Framework

Oct. 12th 2023

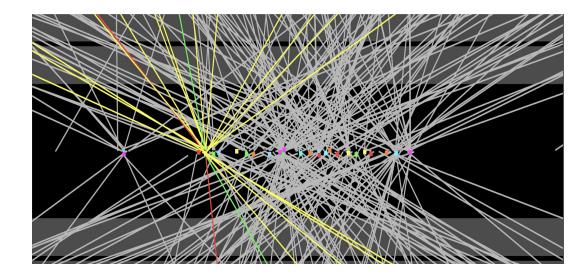
Presenter: Layan AlSarayra

Authors: Layan AlSarayra^[1], Rocky Bala Garg^[2], Lauren Tompkins^[2], Ananya Singha^[3]

> [1] IRIS-HEP Fellow [2] Stanford University [3] HSF-India Fellow

Primary Vertices

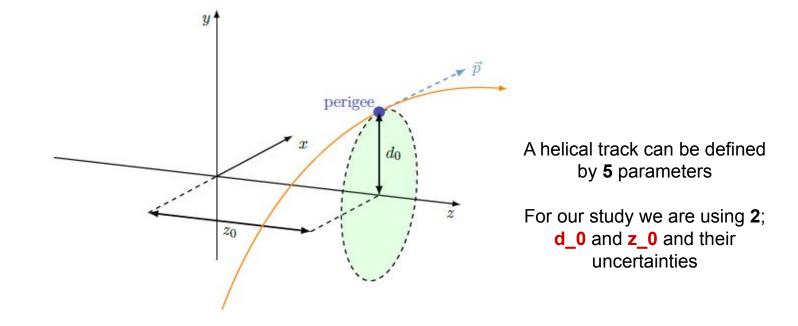
- A Primary Vertex (PV) is the accurate estimation of the inelastic p-p interaction point
- 50-70 collisions per event in Run3 of LHC, 150-200 expected at HL-LHC
- A fast and efficient algorithm is needed to identify PVs from the reconstructed tracks



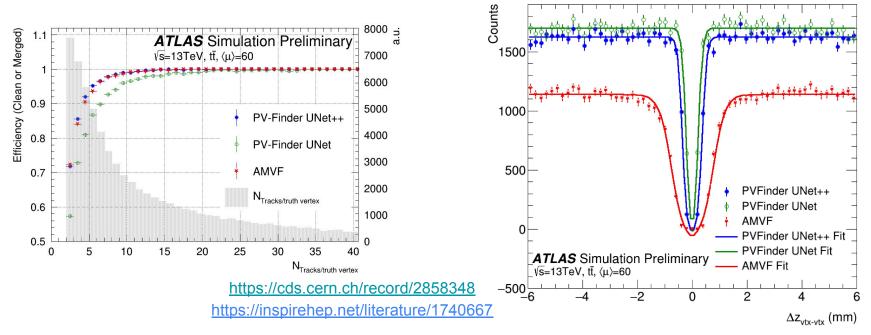
An actual collision environment in ATLAS

Tracks and Track Reconstruction

- > Tracks are the paths taken by charged particles while traversing through the detector
- Track Reconstruction: Finding sets of measurement coming from one charged particle and building the associated trajectory



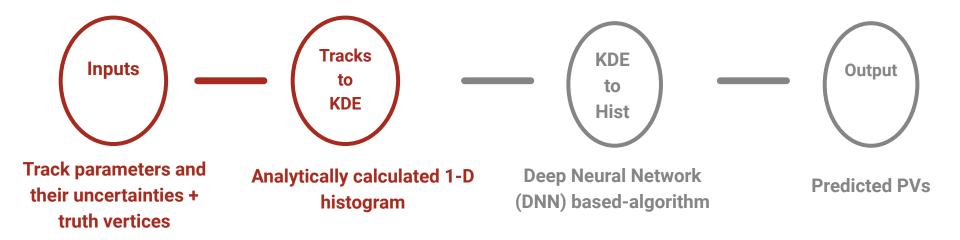
A Previous Study on a PV Identification Algorithm on ATLAS Data



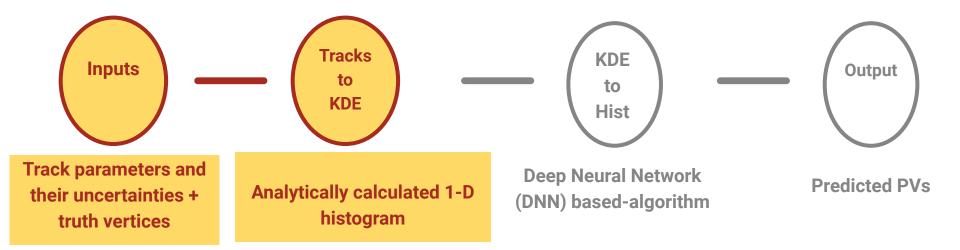
Promising Results:

The PV-Finder algorithm first developed for LHCb, was adapted for ATLAS simulated data and achieved comparable performance to Adaptive Multi-Vertex Finder (AMVF), and obtained better efficiency and more than two times better resolution with a slight increase in fake rate over all the pile-up range

A Deep Learning Based Approach



A Deep Learning Based Approach



By taking reconstructed tracks and their associated uncertainties, we can calculate KDEs

which is sufficient to feed it to NN to estimate PVs locations

Tracks to KDEs : Analytical Approach to Kernel Density Estimation

- KDE: 1D probability distribution estimation technique that transforms the tracks and their measured resolutions into representations of the track density
- A track's density in the (d0,z0)-plane is given by a transverse and longitudinally correlated Gaussian probability distribution centered around (d_{0i}, z_{0i})

$$\mathbb{P}(r) = \mathbb{P}(d, z) = \frac{1}{2\pi\sqrt{|\Sigma|}} \exp\left(-\frac{1}{2}\left((d-d_0), (z-z_0)\right)^T \Sigma^{-1}\left((d-d_0), (z-z_0)\right)\right)$$

$$\Sigma_{i} = \begin{pmatrix} \sigma^{2}(d_{0,i}) & \sigma(d_{0,i}, z_{0,i}) \\ \sigma(d_{0,i}, z_{0,i}) & \sigma^{2}(z_{0,i}) \end{pmatrix}$$

$$W(z) = \sum_{i \in \text{Tracks}} P_i(0, z)$$

ACTS - A Common Tracking Software

- ACTS is an independent, free, open-source software project for track reconstruction in particle physics experiments
- It's designed to be easily adapting to specific experiment's needs
- Provides essential components, such as:
- Track models (e.g. helical, linear)
- Fitting algorithms
- Geometry components (surfaces, volumes, detector elements, etc)
- Propagation components
- Visualization
 And much more!

acts-project/acts

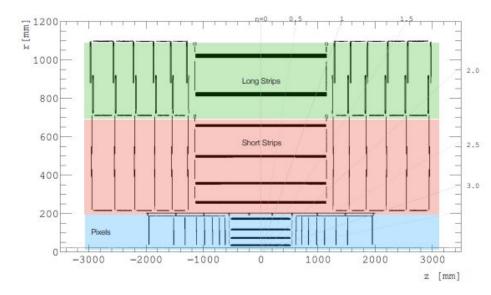
Experiment-independent toolkit for (charged) particle track reconstruction in (high energy) physics experiments implemented in modern C++

https://link.springer.com/article/10.1007/ s41781-021-00078-8

A 58	⊙ 80	R) 1 5	☆ 90	ዮ 132	0
Contributors	Issues	Discussions	Stars	Forks	61

Setup in ACTS

- 1. Detector used: Open Data Detector (ODD)
- 2. Event generation: Pythia8 with ttbar
- 3. Reference PVs: AMVF algorithm
- 4. Pile-up: 50
- 5. Events Number: 3000
- 6. Number of tracks/event ~ 300 tracks



https://iopscience.iop.org/article/10.1 088/1742-6596/2438/1/012110

Implementing PDFs in ACTS to generate KDE histograms

Gather track parameters and their covariances from tracks generated by CKF algorithm $(d_0, z_0, \sigma_d_0, \sigma_z_0, \sigma_d_0 z_0)$

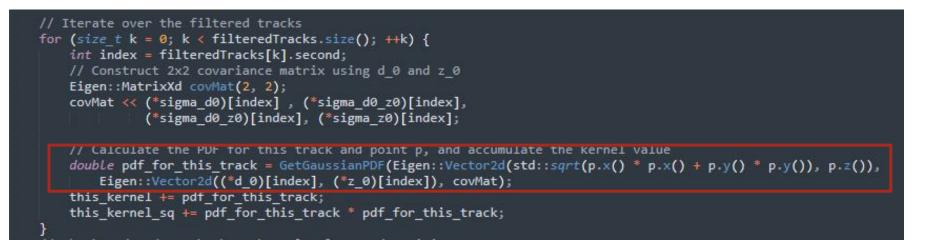
KDEgenerator

Constructor{ Initializing I/O ROOT files, TTrees, Branches, vectors, etc. } Execute { sorting tracks, defining lambda functions for binning and pdf evaluation, filtering tracks, calculating covariance matrix, grid search, outputs best kernel value for that bin, etc } Finalize { write data to output ROOT file, clean-up }

Run KDEgenerator on 3000 events and generate 1-D binned histogram with 12,000 bins with z-range [-24,24] cm (40µm wide bins)

We encoded the PDFs calculation analytically

```
double GetGaussianPDF(const Eigen::Vector2d& x, const Eigen::Vector2d& mean, const Eigen::MatrixXd& covMat) {
 Eigen::MatrixXd covMat_inverse = covMat.inverse();
 double covMat_det = covMat.determinant();
 Eigen::Vector2d diff = x - mean;
 double chisq = (diff.transpose() * covMat_inverse * diff)(0, 0);
 return std::exp(-0.5 * chisq) / (2 * M_PI * std::sqrt(covMat_det));
```

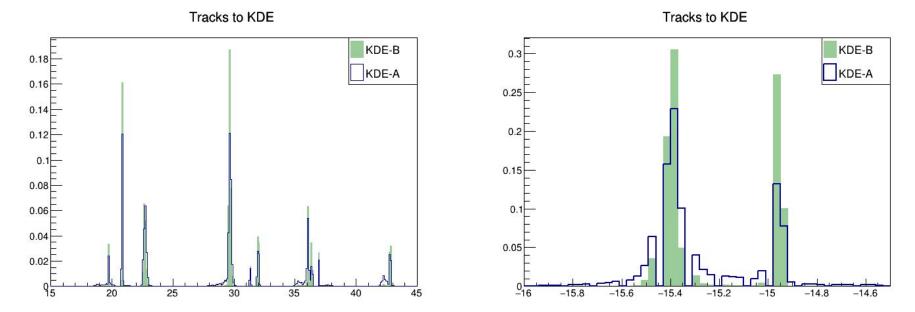


https://github.com/Layan-Sarayra/acts/blob/ACTS_Layan/Examples/Algorithms/Vertexing/src/KDEgenerator.cpp

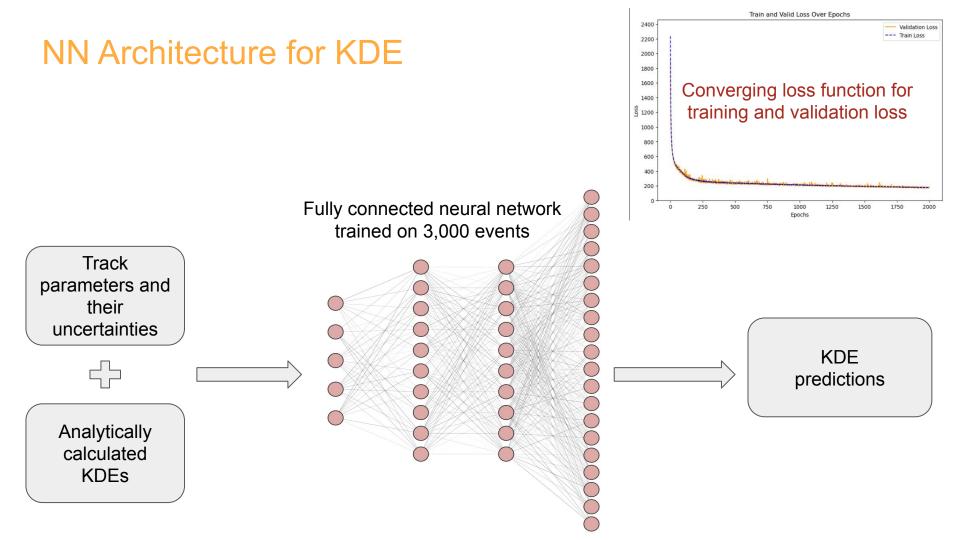
Results from Analytical Approach

KDE-A represents the kernel value = pdf of this track

KDE-B represents the square of the kernel value = the squared value of pdf of this track



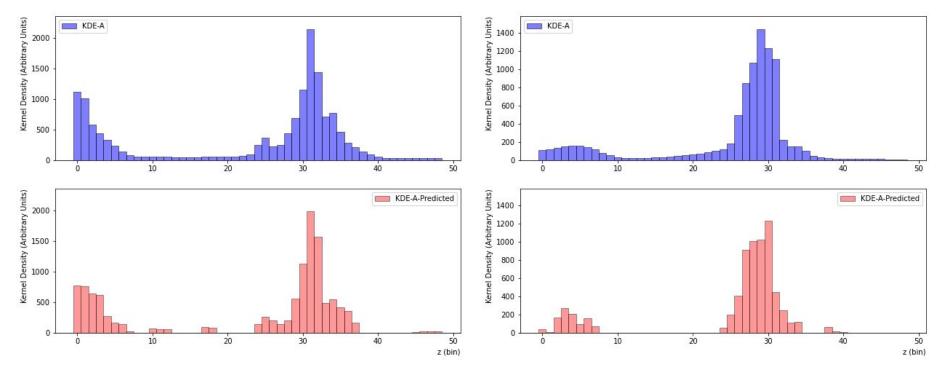
These KDE distributions will be fed into DNN to get PV predictions A small z-range is shown to better observe the structure



Results from NN Based-Approach

By Ananya Singha, HSF-India Fellow

Analytically calculated KDE-A NN predicted KDE-A



Conclusion and Future Work

- Completed the first step in the project; to build a DL-based PV Identification algorithm within ACTS
- Compared the results from analytical vs NN approach
- A drawback is our analytical method to produce KDEs takes large run-time

- Next step is to feed KDEs into DNN to get PV predictions
- Use of neural network for KDE generation (Ananya is working on it)
- We are Integrating this algorithm within ACTS to enable adoption by other experiments for broader uses

Thank you!

My gratitude to Rocky Bala Garg and Lauren Tompkins,

and to all the help and support from Bastian Schlag and Rory O'Dwyer

Questions?