Refactoring AwkwardForth Generation in
Uproot

Seth Bendigo’
Mentors: loana Ifrim? Jim Pivarski?

2023
TUniversity of Minnesota - Twin Cities

2Princeton University

Intro to Uproot

Intro to Uproot

Uproot is an 1/0 library for reading and writing ROOT files for
use in Python [1]. To keep it lightweight and portable, it is kept
strictly as an 1/0 library, and does not depend on ROQOT.

/r
E:n\ysis scri[a D
|-

Uproot: only ROOT 1/O, everything else in other libs |

/i
Elialysis scri;’)EI |:|
[-

root_pandas | | Awkward Array

zstandard

/i
Er}alysis scriF:JEI I:I
LI

| PyROOT |

I 1z4 & xxhash

root_numpy | Pandas

XRootD

NumPy |

| ROOT |

Figure 1: Abstraction layers of various methods to use ROOT files in
Python.

Intro to Uproot

When reading in non-columnar data types, iteration is
required, and Python loops are slow compared to compiled
languages.

» A compiled language cannot be used since, at compile
time, the byte-for-byte layout in ROOT files with complex
data types is unknown.

* Just-in-time compilation could be used, but this affects
portability.

AwkwardForth

AwkwardForth

Uproot instead implements the use of AwkwardForth, an
internal domain specific language [2].

By generating AwkwardForth code to read in the incoming
complex data types, Uproot is significantly optimized. In the
case of std::vector<std::vector<float», AwkwardForth is faster
than Python by a factor of about 400.

AwkwardForth

Unfortunately, the current implementation of AwkwardForth
generation in Uproot has some problems.

Issues
 Excessively mutable: Objects that change their attributes
in arbitrary ways as information needed to generate
AwkwardForth accumulates.
» Readability: Dead code, nondescript attribute names.

Refactor

Refactor

To fix these issues, the refactor is focusing on rewriting the
generation to avoid as much mutability as possible, while
utilizing test-driven development.

There are ~140 tests relating to AwkwardForth in the current
implementation.

Refactor

| started by removing all the code that relied on
AwkwardForth. My next step was to understand in depth how
AwkwardForth currently generates for the case
std::vector<std::vector<float».

Then, | refactored AwkwardForth for just that case, using the
already-written tests to ensure | had done it correctly.

Refactor

Note: What AwkwardForth code gets generated is not
changing. The outer "generation-machinery" is.

As the program reads through the data, it decides what
AwkwardForth code to generate, if any.

The program stores collected AwkwardForth code-snippets in
nodes. These nodes are then worked into a tree.

At the end, it recurses through the tree to generate the
complete AwkwardForth code that will read in the data.

Refactor

The code-snippet tree is highly mutable. The main focus of
the refactor has been making it append only.

Each case

e Get result in current implementation.

« Understand which parts are logic to generate
AwkwardForth.

» Deconstruct, reorganize, and rework to get same result,
but with append only.

Refactor

Example

Figure 2: Python code that generates Python code that generates
Forth code in current implementation.

10

Bibliography

[4 Jim Pivarski, Henry Schreiner, Angus Hollands, Pratyush
Das, Kush Kothari, Aryan Roy, Jerry Ling, Nicholas Smith,
Chris Burr, and Giordon Stark.

Uproot, June 2023.

[4 Jim Pivarski, lanna Osborne, Pratyush Das, David Lange,
and Peter Elmer.
AwkwardForth: accelerating uproot with an internal DSL.
EP] Web of Conferences, 251:03002, 2021.

1

	Intro to Uproot
	AwkwardForth
	Refactor
	Bibliography

