Refactoring AwkwardForth Generation in
Uproot

Seth Bendigo’
Mentors: loana Ifrim?  Jim Pivarski?

2023
TUniversity of Minnesota - Twin Cities

2Princeton University



Intro to Uproot



Intro to Uproot

Uproot is an 1/0 library for reading and writing ROOT files for
use in Python [1]. To keep it lightweight and portable, it is kept
strictly as an 1/0 library, and does not depend on ROQOT.
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Figure 1: Abstraction layers of various methods to use ROOT files in
Python.



Intro to Uproot

When reading in non-columnar data types, iteration is
required, and Python loops are slow compared to compiled
languages.

» A compiled language cannot be used since, at compile
time, the byte-for-byte layout in ROOT files with complex
data types is unknown.

* Just-in-time compilation could be used, but this affects
portability.
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AwkwardForth

Uproot instead implements the use of AwkwardForth, an
internal domain specific language [2].

By generating AwkwardForth code to read in the incoming
complex data types, Uproot is significantly optimized. In the
case of std::vector<std::vector<float», AwkwardForth is faster
than Python by a factor of about 400.



AwkwardForth

Unfortunately, the current implementation of AwkwardForth
generation in Uproot has some problems.

Issues
 Excessively mutable: Objects that change their attributes
in arbitrary ways as information needed to generate
AwkwardForth accumulates.
» Readability: Dead code, nondescript attribute names.
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Refactor

To fix these issues, the refactor is focusing on rewriting the
generation to avoid as much mutability as possible, while
utilizing test-driven development.

There are ~140 tests relating to AwkwardForth in the current
implementation.



Refactor

| started by removing all the code that relied on
AwkwardForth. My next step was to understand in depth how
AwkwardForth currently generates for the case
std::vector<std::vector<float».

Then, | refactored AwkwardForth for just that case, using the
already-written tests to ensure | had done it correctly.



Refactor

Note: What AwkwardForth code gets generated is not
changing. The outer "generation-machinery" is.

As the program reads through the data, it decides what
AwkwardForth code to generate, if any.

The program stores collected AwkwardForth code-snippets in
nodes. These nodes are then worked into a tree.

At the end, it recurses through the tree to generate the
complete AwkwardForth code that will read in the data.



Refactor

The code-snippet tree is highly mutable. The main focus of
the refactor has been making it append only.

Each case

e Get result in current implementation.

« Understand which parts are logic to generate
AwkwardForth.

» Deconstruct, reorganize, and rework to get same result,
but with append only.



Refactor

Example

Figure 2: Python code that generates Python code that generates
Forth code in current implementation.
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