
Refactoring AwkwardForth Generation in
Uproot

Seth Bendigo1

Mentors: Ioana Ifrim2 Jim Pivarski2

2023
1University of Minnesota - Twin Cities

2Princeton University

1



Intro to Uproot



Intro to Uproot

Uproot is an I/O library for reading and writing ROOT files for
use in Python [1]. To keep it lightweight and portable, it is kept
strictly as an I/O library, and does not depend on ROOT.

Figure 1: Abstraction layers of various methods to use ROOT files in
Python.

2



Intro to Uproot

When reading in non-columnar data types, iteration is
required, and Python loops are slow compared to compiled
languages.

• A compiled language cannot be used since, at compile
time, the byte-for-byte layout in ROOT files with complex
data types is unknown.

• Just-in-time compilation could be used, but this affects
portability.

3



AwkwardForth



AwkwardForth

Uproot instead implements the use of AwkwardForth, an
internal domain specific language [2].

By generating AwkwardForth code to read in the incoming
complex data types, Uproot is significantly optimized. In the
case of std::vector<std::vector<float», AwkwardForth is faster
than Python by a factor of about 400.

4



AwkwardForth

Unfortunately, the current implementation of AwkwardForth
generation in Uproot has some problems.

Issues

• Excessively mutable: Objects that change their attributes
in arbitrary ways as information needed to generate
AwkwardForth accumulates.

• Readability: Dead code, nondescript attribute names.

5



Refactor



Refactor

To fix these issues, the refactor is focusing on rewriting the
generation to avoid as much mutability as possible, while
utilizing test-driven development.

There are ∼140 tests relating to AwkwardForth in the current
implementation.

6



Refactor

I started by removing all the code that relied on
AwkwardForth. My next step was to understand in depth how
AwkwardForth currently generates for the case
std::vector<std::vector<float».

Then, I refactored AwkwardForth for just that case, using the
already-written tests to ensure I had done it correctly.

7



Refactor

Note: What AwkwardForth code gets generated is not
changing. The outer "generation-machinery" is.

As the program reads through the data, it decides what
AwkwardForth code to generate, if any.

The program stores collected AwkwardForth code-snippets in
nodes. These nodes are then worked into a tree.

At the end, it recurses through the tree to generate the
complete AwkwardForth code that will read in the data.

8



Refactor

The code-snippet tree is highly mutable. The main focus of
the refactor has been making it append only.

Each case

• Get result in current implementation.
• Understand which parts are logic to generate

AwkwardForth.
• Deconstruct, reorganize, and rework to get same result,

but with append only.

9



Refactor

Example

Figure 2: Python code that generates Python code that generates
Forth code in current implementation.

10



Bibliography



Jim Pivarski, Henry Schreiner, Angus Hollands, Pratyush
Das, Kush Kothari, Aryan Roy, Jerry Ling, Nicholas Smith,
Chris Burr, and Giordon Stark.
Uproot, June 2023.
Jim Pivarski, Ianna Osborne, Pratyush Das, David Lange,
and Peter Elmer.
AwkwardForth: accelerating uproot with an internal DSL.
EPJ Web of Conferences, 251:03002, 2021.

11


	Intro to Uproot
	AwkwardForth
	Refactor
	Bibliography

