Measurements of the **electron density** in the **discharge plasma source**

Carolina Amoedo, Nelson Lopes, Nuno Torrado, Alban Sublet

AWAKE collaboration meeting, 4 Oct 2023

Special thanks to: P. Muggli³, L. Verra¹, M. Turner¹, G. Zevi Della Porta^{1,3}, J. Pucek³, M. Bergamaschi³, A. Clairembaud¹, J. Mezger³, F. Pannell⁵, N. Z. van Gils¹, E. Gschwendtner¹, M. Taborelli¹ and *the AWAKE Collaboration*

¹CERN, Geneva, Switzerland, ²GoLP/IPFN, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal, ³Max Planck Institute for Physics, Munich, Germany, ⁵UCL, London, United Kingdom

Discharge plasma source (DPS)

Double-pulse arc discharge produced between two electrodes at the extremities of long dielectric tubes, filled with Ar/Xe/He at low pressure:

- The ignition pulse (up to 40 kV) establishes a low-current plasma (~10 A)
- The heater pulser allows for a high current (up to 600 A) to achieve the plasma density target

Scalable plasma sources R&D requirements

- Reach AWAKE nominal plasma electron density (7x10¹⁴ cm⁻³)
- And longitudinal uniformity: 0.25% over 10 m
- Demonstrate scalability

DPS run with protons in AWAKE

Why? ightarrow unique chance to test an alternative plasma source between AWAKE run 2a and 2b

 Propagation of a proton bunch in a DPS plasma -> primarily to study Self Modulation Instability (SMI) signature in the DPS (no laser, no electrons experiment)

Parameter scan with lab interferometry

to assess plasma density for

- 3 lengths (10/6.5/3.5 m)
- 3 gases (Ar/He/Xe)
- different discharge current (200..500 A)
- different pressures (8..45 Pa)

10 m single plasma, 24 Pa Ar, ignition+heating 500 A, ~30 us pulses

Longitudinally integrated interferometry

Preparatory lab work before the run

Time [µs]

Phase shift ϕ_i added to the laser beam ($\lambda_i = 632 \ nm$) by a plasma density n_e $\phi_i = r_e \ \lambda_i \ n_e \ L$

where r_e is the classic electron radius ($r_e = 2.82 \times 10^{-15} m$) and L is 2x the length of the plasma

SUMMARY LAB INTERFEROMETRY

Xenon allowed reaching densities

> 1x10¹⁵ cm⁻³

SUMMARY LAB INTERFEROMETRY

- Xenon allowed reaching densities
 > 1x10¹⁵ cm⁻³
 - **Argon** densities ranging from 1x10¹³ to 1x10¹⁵ cm⁻³
 - \rightarrow well within AWAKE nominal density

(7x10¹⁴ cm⁻³)

SUMMARY LAB INTERFEROMETRY

- Xenon allowed reaching densities
 > 1x10¹⁵ cm⁻³
- **Argon** densities ranging from 1x10¹³ to 1x10¹⁵ cm⁻³
- → well within **AWAKE nominal density** $(7x10^{14} \text{ cm}^{-3})$
- Helium tested for significant ion mass difference and its effects on self-modulation of the proton beam

DPS run in AWAKE

- Protons only
- Using existing diagnostics (streak camera, etc)

10 m single plasma, 24 Pa Ar, 500 A (13.04.2023)

Anode

Synchronization of the p+ bunch with DPS plasma

Ar 24 Pa, 500 A , 10 m single, p+ bunch delay to plasma current

→ Change delay between current pulse and p+
 bunch to access p+ modulation/plasma
 density at different time

Time-resolved image of the p+ bunch charge density distribuition

→ Modulation frequency proportional to plasma density

Delay density scan

- → Density profile over time from proton SMI
- → Interferometry lab
 measurements in good
 agreement density obtained
 with SMI

Benchmark lab interferometry plasma density with SMI modulation frequency

- → Density profile over time from proton SMI
- → Interferometry lab
 measurements in good
 agreement density obtained
 with SMI

Benchmark lab interferometry plasma density with SMI modulation frequency

17

Scalable plasma sources R&D requirements

- Reach AWAKE nominal plasma electron density (7x10¹⁴ cm⁻³)
- And longitudinal uniformity: 0.25% over 10 m → next steps
- Demonstrate scalability

a change Anode

10 m single plasma, 24 Pa Ar, 500 A (24.03.2023)

Summary

- Achieved AWAKE nominal density, next steps to measure uniformity (Thomson scattering, µs cameras)
- 10 m DPS designed, built and tested in the lab: interferometry to measure longitudinally averaged density
- The self-modulation instability (SMI) signature was observed with the DPS
- Lab interferometry in good agreement with density from p+ self-modulation.
- Large operation range that allows to vary plasma density over wide range in different gases

 → study unique physics: plasma ion motion, Current Filamentation Instability with very high densities and wide bunches and plasma light, wakefied amplitude all along the plasma.