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Current Filamentation Instability (CFl)

Plasma preserves the current neutrality

—> return current of plasma electrons to
compensate for the bunch current
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Current Filamentation Instability (CFl)

Plasma preserves the current neutrality

—> return current of plasma electrons to
compensate for the bunch current

Currents generate magnetic fields

Opposite currents repel each other
Perturbation or anisotropy in the transverse
distribution causes unbalanced B field

- instability

- growth of current filaments = self-pinching
- growth of B field and magnetic energy

If the bunch is wider than the plasma skin depth 6 =

- the return current flows within the bunch

Roswell Lee and Martin Lampe, Phys. Rev. Lett. 31, 1390 (1973)
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Current Filamentation Instability (CFl)

T=40 T= T=100 T=140 T=220
(simulations of electron beam streaming through plasma)

* Currents generate magnetic fields

* QOpposite currents repel each other -

-
<

* Perturbation or anisotropy in the transverse
distribution causes unbalanced B field 'Ib

- instability :I
- growth of current filaments = self-pinching P
2 grOWth of B field and magnetic energy Roswell Lee and Martin Lampe, Phys. Rev. Lett. 31, 1390 (1973)



CFl In space

Plausible candidate for:

* magnetization of astrophysical media
[J. Niemiec et al., The Astrophysical Journal 684, 1174 (2008)]

* magnetic fields enhancement

- long duration afterglow of gamma-ray bursts
[M. V. Medvedev et al.,The Astrophysical Journal 666, 339 (2007)]
[M. V. Medvedev et al., Astrophys. Space Sci. 322, 147-150 (2009)]

—> collisionless shocks
[M. V. Medvedev and A. Loeb, The Astrophysical Journal 526, 697 (1999)]

Also important for hot electron propagation in inertial confinement fusion targets:
[M. Tabak et al., Physics of Plasmas 1, 1626 (1994)]



Motivation for Experiments

LWFA

/ 1) Plasma Wakefield Acceleration \ I--.
IZOmrad
CFl splits driver and/or witness bunch in multiple filaments I--.

c)
—> structure of the wakefields is spoiled -I--.
= no high-quality acceleration - ].l
Beamdriven
electrons

. . . o
—>Define a maximum ratio ?

Q\/Iaximum 0, given ny,, to effectively drive Wakeﬂeldy «—E/MeV EED [

C. M. Huntington et al.,
Phys. Rev. Lett. 106, 105001 (2011)
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B. Allen et al.,
Phys. Rev. Lett. 109, 185007 (2012)

M. Tatarakis, et al.,
Phys. Rev. Lett. 90, 175001 (2003)



Motivation for Experiments

1) Plasma Wakefield Acceleration

4 N

CFl splits driver and/or witness bunch in multiple filaments

—> structure of the wakefields is spoiled
- no high-quality acceleration

. . . o
—>Define a maximum ratio Er

Q\/]aximum a,, given n, to effectively drive wakeﬁelds/

-

CFl generates and amplifies magnetic field
—> fraction of the bunch kinetic energy is converted into
magnetic energy

2) Laboratory Astrophysics

- Directly measure on the drive bunch
\ (until now, experiments with probe beams)

J

Laser
~200 mJ, 50 fs
A

\)0& e- beam
‘1"5 MeV, Helium gas jet

Synthetic proton radiographs from 14.7 MeV protons
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C. M. Huntington et al., Nature Physics 11, 173-176 (2015)
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Weibel magnetic fields

8 ps

Chaojie Zhang et al., Phys. Rev. Lett. 125, 255001 (2020)




Experimental Setup

Discharge
p+ beW Plasma
OTR screen ki : SOU rce

incoming beam
- to digital camera
- time-integrated images

OTR screen
~3.5 m downstream of plasma exit
- to streak camera
- - time-resolved images

Proton bunch parameters:  Plasma parameters:
* Q=44nC * Argon

OTR screen
[} ~ =
o~ 0.5mm * P=24Pa ~0.3 m downstream of plasma exit
e €=2.5mm-mrad * Npe=(0.68-9.38)x 10 cm3 - to digital camera

- time-integrated images

—>we can vary the ratio initial size — skin depth




Experimental Setup

Discharge
P+ beam Plasma
rmsaen . Source
\

- to digital camera
- time-integrated images

OTR screen
~3.5 m downstream of plasma exit
- to streak camera
- time-resolved images

OTR screen
~0.3 m downstream of plasma exit
- to digital camera
- time-integrated images

Expected filaments with small size, large emittance
—> large divergence when leaving the plasma
—> screen as close as possible to exit



Experimental Setup

. Sabato 28 gennaio 2023

Patric, 09:35

Screen right after the discharge source?

Ve LnricThIegIlailcu 1niiagco \

- OTR screen
~3.5 m downstream of plasma exit
- to streak camera
- time-resolved images

OTR screen
~0.3 m downstream of plasma exit
- to digital camera
- time-integrated images

Expected filaments with small size, large emittance
—> large divergence when leaving the plasma

—> screen as close as possible to exit "




Plasma OFF — no gas

Entrance Exi
1.65 mm . 304mm _ t Streak camera
i ns-scale images

4
A

4
A

1.1ns

A
v

1.65 mm
3.04 mm

7.9 mm

0,=0.48 mm 0,=0.81 mm B o, =170 ps
0y= 0.53 mm O-rO:O-E’ mm 0,= 0.87 mm 0,=0.84 mm
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Plasma OFF — no gas

Entrance :
1.65 mm . 304mm Exit Streak camera
i ns-scale images

4
A

4
A

1.1ns

A
v

1.65 mm
3.04 mm

7.9 mm

0,=0.48 mm 0,=0.81 mm B o, =170 ps
0y= 0.53 mm O-rO:O-E’ mm 0,= 0.87 mm 0,=0.84 mm

No distinguishable features in the transverse or longitudinal distribution
12



Plasma ON — Npe = 9.38e14/cc > 0,/(c/w,,) = 3.2 at plasma entrance

3.04 mm

3.04 mm

Exit
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Plasma ON — Npe = 9.38e14/cc > 0,/(c/w,,) = 3.2 at plasma entrance

3.04mm Exit clear filaments!

A
A

* Wide, long, relativistic proton bunch undergoes CFl

e Distribution of filaments changes from event to event

» Size of filaments ~ §

* No filaments at r > 0,-=2 bunch density and growth rate too low

3.04 mm

14



Plasma ON — Npe = 9.38e14/cc > 0,/(c/w,,) = 3.2 at plasma entrance

3.04mm Exit clear filaments!

A * Wide, long, relativistic proton bunch undergoes CFl
e Distribution of filaments changes from event to event
* Size of filaments ~ §

A
A

£
§ * No filaments at r > 0,-=2 bunch density and growth rate too low
=
2 <
v Ny
(\\
\\
fl’
- AI T '
0.0 -0.2 -0.4

t [ns]

indication of filaments towards the back of the bunch
caveat: 1) screen far away from plasma exit
2) streak camera captures only the central slice
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Plasma ON — Npe = 9.38e14/cc > 0,/(c/w,,) = 3.2 at plasma entrance

3.04 mm

3.04 mm

A

\ 4

Exit

clear filaments!

Wide, long, relativistic proton bunch undergoes CFl

Distribution of filaments changes from event to event

Size of filaments ~ &

No filaments at r > g, bunch density and growth rate too low

0.4 0.2 0.0 B2 —0.4
t [ns]

indication of filaments towards the back of the bunch
caveat: 1) screen far away from plasma exit
2) streak camera captures only the central slice

* Evolution along the bunch (convective instability) 16
* Moderate growth rate = early stage of CFl



Plasma ON — Npe = 2.25el14/cc > 0,/(c/w,) = 1.5 at plasma entrance

At the threshold, the system alternates between:

y [mm]
= 5
y [mm]

* multiple filaments (CFl)
=> no self-modulation instability i

[already shown in L. Verra et al. (AWAKE Coll.), Phys. Plasmas 30, 083104 (2023)] . . : ' s hl M '.
-1 O 1 -0.04 -0.06 -0.08 -0.10

y [mm] t [ns]

17



Plasma ON — Npe = 2.25el14/cc > 0,/(c/w,) = 1.5 at plasma entrance

At the threshold, the system alternates between:

* multiple filaments (CFl)
=> no self-modulation instability i
[already shown in L. Verra et al. (AWAKE Coll.), Phys. Plasmas 30, 083104 (2023)]

y [mm]
=
y [mm]

=1 0 0 —0.04 -006 -008 -0.10

y [mm] t [ns]
» focusing to single “filament” a o : e
- self-modulation instability = = B :
E o ® £ ow*&’{&”\% ﬂ*" 3"5 a&’,‘
> > : :’ 3 : :
-1 -2 ANGHMA W
-1 0 1 —-0.04 -0.06 -0.08 —0.10
y [mm] t [ns]

(For lower nge, the bunch undergoes SMI)
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Plasma ON — Npe = 2.25el14/cc > 0,/(c/w,) = 1.5 at plasma entrance

At the threshold, the system alternates between:

* multiple filaments (CFl)
=> no self-modulation instability i
[already shown in L. Verra et al. (AWAKE Coll.), Phys. Plasmas 30, 083104 (2023)]

y [mm]
= 5
y [mm]

=1 0 0 —0.04 -006 -008 -0.10

y [mm] t [ns]
» focusing to single “filament” : -5 —
- self-modulation instability = = e Lk
D 5 ,,:‘5‘-;-,«‘,‘..; N ,'.";.: ;':_j,“-._g;
E 0 ® £ OpAL I e i
> >
-1 -2 M i
-1 0 1 —~0.04 -0.06 -0.08 -0.10
y [mm] t [ns]

Reminder: no observable differences . ‘
in the incoming bunch distribution A _
.» .

(For lower nge, the bunch undergoes SMI)




Magnetic field generation

* Plasma return current overall compensates for the bunch current and magnetic field
» CFl = non-zero fields at scales ~ skin depth

 We calculate return current to compute magnetic fields

20



Magnetic field generation

Plasma return current overall compensates for the bunch current and magnetic field
» CFl = non-zero fields at scales ~ skin depth

 We calculate return current to compute magnetic fields

* Early stage of CFl = Filaments are confined within the Gaussian distribution

Bunch Charge Density Profile

5 : 8
E - N
é 0 L - o -
> - 6
-1 - A A NE
e . 5 E
- e e Q
E -' _a_-‘-j_—— 4
; (& ]
- 3
1-1 0 1
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Magnetic field generation

* Plasma return current overall compensates for the bunch current and magnetic field
» CFl = non-zero fields at scales ~ skin depth

 We calculate return current to compute magnetic fields

* Early stage of CFl = Filaments are confined within the Gaussian distribution
Return curreni_obtained as the “complementary” of the bunch current with respect to the smooth Gaussian distribution

-
. : Horizontal projections -
Bunch Charge Density Profile proj % _ "
14 g ‘ ‘ % PR ~
E _— R
é L8 .
> - 6 /
fi-

5E
= b
E 4 . \
— ¥ ---- beam - plasma off %
= 3 —— beam -plasma on

—— plasma return

—2 =1 0 1 2
X [mm]
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* Plasma return current overall compensates for the bunch current and magnetic field
» CFl = non-zero fields at scales ~ skin depth

Magnetic field generation

 We calculate return current to compute magnetic fields

* Early stage of CFl = Filaments are confined within the Gaussian distribution
* Return current obtained as the “complementary” of the bunch current with respect to the smooth Gaussian distribution

Bunch Charge Density Profile

y [mm]

y [mm]

3 .
‘

.

ol

(6] (@)
nC/mm?

N

Horizontal projections

7 N
¥ ---- beam - plasma off %

—— beam -plasma on
—— plasma return

-1 0 1
X [mm]

Plasma Return Current

J .




Magnetic field generation

* We calculate the transverse magnetic field generated by each current with Ampere’s law
—> the sum of the two contributions provides the overall magnetic field

24



Magnetic field generation

* We calculate the transverse magnetic field generated by each current with Ampere’s law
—> the sum of the two contributions provides the overall magnetic field

4
05 3
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£ 0.0 2
> .
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(nOte: Bmax, bunch =~ 40 mT, Ibunch ~50 A) 25



Magnetic field generation

* We calculate the transverse magnetic field generated by each current with Ampere’s law
—> the sum of the two contributions provides the overall magnetic field

p N z 4

051
= b
E 0.0
> :

-0.51
054"
= |
£ 007
> e ol

-0.5¢ v |

- PLEE T 2 g 3’_::_",’ N -4
-0.50.0 0.5 -0.50.0 0.5
x [mm] x [mm]

(nOte: Bmax, bunch =~ 40 mT, Ibunch ~50 A)

non-zero magnetic field, confined within filaments

sign reverses in between filaments
(where the return current flow)

on average zero outside of the bunch
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y [mm]

y [mm]

Magnetic field generation

—> the sum of the two contributions provides the overall magnetic field
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(nOte: Bmax, bunch =~ 40 mT, Ibunch ~50 A)

4

3

Magnetic energy within the bunch:

p= [

We calculate the transverse magnetic field generated by each current with Ampere’s law

< B* >
210

!

f

V = bunch volume

Increase with n,
Small amount of energy
(bunch energy ~ 20 kJ):
- early stage
of the instability
- moderate
growth rate
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Magnetic field generation

4

3

filaments ¢

Magnetic energy within the bunch:

C

o

< >
po (B
210

We calculate the transverse magnetic field generated by each current with Ampere’s law
—> the sum of the two contributions provides the overall magnetic field

BZ

Ul

-
0 2 4 6
Npe [cM™7]
.
*
L . .
0 2 4 6

Npe [cmM™3]

V = bunch volume

* Increase with n,
* Small amount of energy
(bunch energy ~ 20 kJ):
- early stage
of the instability
- moderate
growth rate

* Energy correlated
with the number of
filaments within the
bunch
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Conclusions

We consistently observe CFl of long, relativistic proton bunch
when % > 1.5

At the threshold % = 1.5, the bunch-plasma system
alternates between CFl and SMI

We show that occurrence of CFl generates magnetic fields
* the amount of magnetic energy increases with n,

Manuscript to circulate in the next days

0.5{ "

-0.50.0 0.5
X [mm]
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hank you for your attention!



Backup slides
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Plasma ON — Npe = 0.7el14/cc > 0,/(c/w,.) = 0.9 at plasma entrance

Streak camera

3.04 mm Exit
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SMI on all events

1.1ns

— bright core and halo on time-integrated images
- microbunches on ps images
—> hints of growth on ns images
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Obligue mode growth rate

r=T. ‘/5 H S e
24/3 ny PAl'm,’
myp e p

[3] A. Bret, L. Gremillet, and M. E. Dieckmann, Mul-
tidimensional electron beam-plasma  instabilities
in the relativistic regime, Physics of Plasmas 17 ss
120501 (2010), https://pubs.aip.org/aip/pop/article-

pdf/doi/10.1063/1.3514586/16019035/120501_1_online.pdf.
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~0.04 -006 -008 -010
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Screen at plasma exit

Filaments have small size, large emittance camera
—> large divergence when leaving the plasma screen
- We installed an OTR screen as close as possible to plasma exit

(not possible with vapor source because of laser pulse) DPS

Screen —camera distance: 50 cm
M=3.2

50% MTF at = 0.027 mm

depth of field ~1.5 mm
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Plasma ON — Npe = 9.38e14/cc > 0,/(c/w,,) = 3.2 at plasma entrance

3.04mm Exit clear filaments!

A * Wide, long, relativistic proton bunch undergoes CFl
e Distribution of filaments changes from event to event
* Size of filaments ~ §

. . 1
* Nofilamentsatr > 0,2 bunchdeﬁsﬁ%y—a%d@%ewtwﬁsa%e%ee—lew—»

A
A

3.04 mm

indication of filaments towards the back of the bunch
caveat: 1) screen far away from plasma exit
2) streak camera captures only the central slice

* Evolution along the bunch (convective instability)
* Moderate growth rate = early stage of CFl
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