

³CERN, 1210 Meyrin, Switzerland

0 0 0

0 0 0

> This work has been carried out within the framework of the EUROfusion Consortium, funded by the European Union via the Euratom Research and Training Programme (Grant Agreement No 101052200 - EUROfusion). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Commission. Neither the European Union nor the European Commission can be held responsible for them.

Erwin Walter¹, John P. Farmer², Marlene Turner³

² Max Planck Institute for Physics, 80805 Munich, Germany

¹Max Planck Institute for Plasma Physics, 85748 Garching bei München, Germany

Motivation

Experimental and simulation results have shown in good qualitative agreemment that ion motion decreases the wakefield strength and stops the development of the self-modulation instability (SMI) towards the beam tail.

What is the dominant mechanism?

ORIGINS Excellence Cluster

Motivation

Two Relevant Regimes

Chain of causality difficult to follow → Models help to deepen understanding

- Prior to SMI
- Wakefield grows from a seed
- Model: Short driver

- After SMI
- Wakefield <u>resonantly</u> driven by microbunches
- Model: Premodulated beam

Structure

Motivation

Dominant effect of ion motion for a ...

- Short driver
- Premodulated driver
- Self-modulated driver

Conclusion

Short Driver

• Short, dense beam drives weakly relativistic electrostatic plasma response

Short Driver

- Short, dense beam drives weakly relativistic electrostatic plasma response
- Plasma ions experience ponderomotive force of wakefields amplitude

Short Driver - Ponderomotive Force

Net motion of ions driven by radial gradient in wakefield components (F. Chen, 2018)

$$F_p = -rac{e^2}{4m_e\omega_p^2}
abla_r \hat{E}^2$$

lons with $k_p r < 1$ pushed towards axis lons with $k_p r > 1$ pushed outwards

Short Driver - Ponderomotive Force

Net motion of ions driven by radial gradient in wakefield components (F. Chen, 2018)

$$F_p = -rac{e^2}{4m_e\omega_p^2}
abla_r \hat{E}^2$$

Ions with $k_p r < 1$ pushed towards axis Ions with $k_p r > 1$ pushed outwards

Short Driver

- Local variation of the restoring force results in local plasma wavelength changes
- Plasma wave dephases between different radii
- Radial wakefield (~radial integral of plasma charge density) reduces due to **phase mixing**

Short Driver - Phase Mixing

- Phase of plasma wave shifts between different radii Here: 25th and 75th percentile of initial radial beam distribution
- Transverse plasma electron oscillation becomes decoherent

Short Driver

Wakefield greatly reduces when plasma wave dephases in the order of π/k_p

Long beam

Self-modulated beam

Dominant effect: Phase mixing

- Microbunches initially correct for radial phase mixing
- **Detuning** of plasma response to a linear wave ($\omega = \omega_{p0}$) result in saturation and reduction of wakefield

Premodulated Driver

Premodulated Driver - Linear Theory

Ion density change well described in linear theory (J. Vieira, 2012)

Premodulated Driver - Linear Theory

Ion density change well described in linear theory (J. Vieira, 2012)

ORIGINS Excellence Cluster AWAKE

Dephasing in plasma response due to ion

density variation and microbunch

MAX-PLANCK-INSTITUT FUR PLASMAPHYSIK | ERWIN WALTER | 04.10.2023

-100

PIC

Long beam

Dominant effect: Phase mixing

Self-modulated beam

Increased detuning combines with phase mixing

 \checkmark

Does this apply the same way for a self-modulating beam?

Self-Modulated Driver @ 1.5m

- Wakefield radially peaks at lower radii, which results in a lower extend of ion motion
- Wakefield dominantly reduces due to phase shift of the plasma response radially

ORIGINS Excellence Cluster

Self-Modulated Driver @ 1.5m

by π/k_p from SMI induced phase shift

spacing comparable to static ion

MAX-PLANCK-INSTITUT FÜR PLASMAPHYSIK | ERWIN WALTER | 04.10.2023

ORIGINS Excellence Cluster

AWAKE

- After SMI microbunches compensate phase shift in plasma response
- Microbunches deteriorate faster at comparable wakefield amplitude...

Combination of phase mixing and detuning reduces wakefield

Self-Modulated Driver

Beam and Wakefield Evolution

- Effective current of beam head reduces faster in Helium due to increased detuning between radial wakefield and microbunches at comparable wakefield amplitude.
- Beam tail survives in Helium as radial wakefield is greatly reduced during and after SMI.

Conclusion

- Experimental and simulation data showed that development of SMI stops due to ion motion.
- We used PIC simulations to understand the dominant effect of ion motion.
- At early propagation distances, the plasma response dephases at different radii due to local plasma wavelength variation, which reduces the radial wakefield due to phase mixing. This effect lets the beam tail survive.
- Once SMI develops, the wakefield reduces as the wakefield detunes from the linear wave and due to phase mixing. The microbunches deteriorate faster due to detuning.

.....................

Thank you for your attention

For questions please contact me: erwin.walter@cern.de

Literature

F.F.Chen. Introduction to Plasma Physics and Controlled Fusion. Springer. 2018.

A.P. Sosedkin and K.V. Lotov. LCODE: A parallel quasistatic code for computationally heavy problems of PWFA Nucl. Instrum. Meth A 829. 2016.

J. Vieira et. al. Ion Motion in Self-Modulated Plasma Wakefield Accelerators. Phys. Rev. Let. 2012.

M.F. Gilljohann et. al. Direct Observation of Plasma Waves and Dynamics Induced by Laser-Accelerated Electron Beams. Phys. Rev. X. 2019.

K.V. Lotov. Excitation of two-dimensional plasma wakefields by trains of equidistant particle bunches. Phys. of Plasm. 2013.

P.I. Morales Guzman. Simulation and experimental study of proton bunch self-modulation in plasma with linear density gradients. Phys. Rev. Acc. Beams. 2021.

Motivation Breakdown of SMI

