

Multi-Strange particle production in Run 3 pp collisions at 900 GeV

ALICE-STAR INDIA Collaboration Meeting 21-24 Nov 2023

<u>Upasana Sharma</u> <u>Supervisor: Prof. Anju Bhasin</u> Department of Physics University of Jammu

Outline

- Motivation
- Data Sample
- Task Used
- Topological and Kinematical Selections
- Signal Extraction
- Corrections used
- Results
- Summary

Motivation

- The hot, dense state of matter at sufficiently high temperature and high energy density i.e (QGP) Quark Gluon Plasma.
- The temperature of QGP formation close to the mass of s-quark allows for thermal production of *s*trange and Anti-strange quark pairs through the annihilation of gluon pairs.
- Thus, lead to an enhancement of multi-strange hadrons.

Physics motivation

Extend the studies of **strangeness enhancement in small collision systems** (pp collisions) characterised by **higher multiplicity**.

Ω production at low multiplicity

→ exploiting Run 3 pp at 900 GeV collisions (not feasible with Run 1 data!)

Ω production at high multiplicity

 \rightarrow Does Ω/π ratio in high multiplicity pp collisions saturate, smoothly connecting with Pb-Pb results (thermal limit)?

 \rightarrow Or does it exceed the low multiplicity Pb-Pb?

Physics motivation

Extend the studies of **strangeness enhancement in small collision systems** to pp collisions characterised by **higher multiplicity.**

 Ω production at low multiplicity exploiting Run 3 pp at 900 GeV collisions (not feasible with Run 1 data!)

Data sample

Dataset \rightarrow **Pilot Beam Data LHC22cde_pass4** (72x 10⁶ events).

MC used: MC Gap-Triggered (produced internally*) and General Purpose MC Anchored to 900 GeV Data LHC22cde_pass4 (**LHC22h1c1**).

Tasks used for the analysis

<u>https://github.com/AliceO2Group/O2Physics/blob/master/PWGLF/Tasks/cascqaanalysis.cxx</u> \rightarrow produces a derived data table which stores topological and kinematic variables of cascade candidates

<u>https://github.com/AliceO2Group/O2Physics/blob/master/PWGLF/Tasks/cascpostprocessing.cxx</u> \rightarrow produces **invariant mass** vs p_T vs multiplicity **histograms** after applying custom selections to topological and kinematic variables

 \rightarrow can be run locally or on the hyperloop on larger datasets

Topological and kinematic selections for Ω identification

Number of TPC crossed pad rows	> 50
DCA meson daughter to primary vertex	> 0 cm
DCA baryon daughter to primary vertex	> 0 cm
DCA bachelor to primary vertex	> 0.04 cm
DCA between daughter tracks of the V0s	< 0.4 cm
Casc CosPA	> 0.95
V0CosPA	> 0.99
DCA between bachelor and V0s	< 0.8 cm
DCA V0s to primary vertex	>0.03 cm
V0s decay radius	> 1.2 cm
Cascade decay radius	> 0.5 cm
Rapidity _y	< 0.5

22-11-2023

ALICE-STAR India Meet

Signal Extraction

Signal extraction of Ω in FT0M (0-100)Multiplicity Class

• Fit with gaussian + pol1

Background B = integral of fit function

Signal S = (S+B) - B

Signal extraction of Ω in FT0M Multiplicity Classes

ALICE-STAR India Meet

Mean (μ) and Sigma (σ) in FT0M Classes

Purity and Raw Yield in FT0M Classes

Event and Signal loss corrections in Run 3

22-11-2023

Efficiency x Acceptance correction

$$\varepsilon_{\text{eff. x acc.}} (\Delta p_{\text{T}}) = \frac{N_{\text{rec casc.}} (\Delta p_{\text{T}})}{N_{\text{gen casc., at least 1 rec.event}} (\Delta p_{\text{T}})}$$

• Efficiency x Acceptance is calculated by using the **Gap-Triggered** MC (produced internally) **Anchored** to Data .

Event loss correction

 $\frac{\varepsilon_{\text{event loss}}\left(\%\right)}{\varepsilon_{\text{event splitting}}\left(\%\right)} = \frac{N_{\text{rec}}(\%)}{N_{\text{gen}}(\%)}$

First calculation of event loss in multiplicity classes in 900 GeV

Calculated by using the General purpose MC anchored to LHC22c,d,e

22-11-2023

Signal loss correction

$\varepsilon_{\text{signal}} (\Delta p_{\text{T}}, \%) = \frac{N_{\text{gen cascades, at least 1rec. event}}(\Delta p_{\text{T}}, \%)}{N_{\text{gen cascades}} (\Delta p_{\text{T}}, \%)}$

First calculation of Ω signal loss in multiplicity classes and p_{τ} intervals

Signal Loss is calculated by using the Gap-Triggered MC (produced internally) anchored to data

• As expected significant only for the lower mult classes

p_{T} spectra in multiplicity classes

First Ω spectra in multiplicity classes in pp at 900 GeV

Hardening of the spectra in $p_{\rm T}$ observed for increasing multiplicity

-**Gap-Triggered** + anchored to 900 GeV Data (produced internally) to calculate the Efficiency X Acceptance and Signal Loss Correction.

-MC General Purpose anchored to LHC22c,d,e (LHC22h1c1) (produced centrally) to calculate the event loss correction

Most of the systematic uncertainties are inherited from 13.6 TeV analysis

Multiplicity spectra

$MB p_T$ spectrum

First Ω spectrum in pp at 900 GeV

-**Gap-Triggered** MC anchored to 900 GeV data (produced internally) to calculate the Efficiency X Acceptance and Signal Loss Correction.

-MC General Purpose anchored to LHC22c,d,e (LHC22hc1)(produced centrally) to calculate the event loss correction

Comparison with model predictions for Pythia Monash and with color ropes and EPOS-LHC

Ω/π Ratio

First Ω/π ratio in pp at 900 GeV

Comparison with model predictions for Pythia8 Monash and with color ropes

Summary and Outlook

- Invariant Mass Distribution of Ω^{\pm} .
- Mean, Sigma, Purity and Raw Yield in FT0M Classes.
- Efficiency X Acceptance Correction, Event Loss Correction, Signal Loss Correction.
- Corrected Spectra in FT0M Classes.
- MB p_T Spectrum and Comparison with models.
- Omega-Pion Ratio (Ω/π) .

Summary

- Invariant Mass Distribution of $\mathbf{\Omega}^{\pm}$.
- Mean, Sigma, Purity and Raw Yield in FT0M Classes.
- Efficiency X Acceptance Correction, Event Loss Correction, Signal Loss Correction.
- Corrected Spectra in FT0M Classes.
- MB p_T Spectrum and Comparison with models.
- Omega-Pion Ratio (Ω/π) .

THANK YOU