

(Intermittency analysis)

Salman Malik Supervisor: Ramni Gupta (University of Jammu, Jammu & Kashmir, India)

JIRA: <https://alice.its.cern.ch/jira/browse/PWGCF-204> **AN:** <https://alice-notes.web.cern.ch/node/1419>

ALICE-STAR INDIA MEET 21-24 Nov, 2023

Outline

- Physics Motivation & Observables
- Dataset
- Results
- Summary

Motivation & Observables

- Large density fluctuations -> final stage collective behaviour as QGP expands.
- \bullet Fluctuations => sensitive to the phase transition.
- These can be detected by performing intermittency analysis

=> works by measuring **Normalized Factorial Moments (NFM).**

- Suggested that the presence of intermittency:
	- dynamical fluctuations
	- self-similarity
- \bullet 2D phase space (η ϕ) is divided into MxM bins (self-similar)
- \bullet $F_{q}(M)$ => NFM are averaged over the bins to measure local fluctuations.

$$
F_q(M)=\frac{\frac{1}{N}\sum_{e=1}^N\frac{1}{M}\sum_{m=1}^M f_q(n_{me})}{\left(\frac{1}{N}\sum_{e=1}^N\frac{1}{M}\sum_{m=1}^M f_1(n_{me})\right)^q} \\\hspace*{1.5in}f_q(n_{me})=\prod_{j=0}^{q-1}(n_{me}-j) \\\hspace*{1.5in}q\colon \text{order of the moment} \\\hspace*{1.5in}e\colon \textit{event} \\\hspace*{1.5in}n_{ie}\geq q
$$

R.C. Hwa and C. B. Yang, Acta Physica Polonica B . Vol. 48 Issue 1 (2017) R.C. Hwa & C.B. Yang, PRC 85, 044914 (2012), nucl-ex:1411.6083 **R.C. Hwa and M.T. Nazirov, Phys. Lett. 69, 741 (1992).**

Motivation & Observables

- NFM are sensitive to:
	- particle distribution in the bins
	- correlation between bins
- Scale-invariant form of particle distribution in the phase space

=> NFM scale with the number of bins M **(M-scaling)**

 $\left|F_q \right| \propto \left(M^2 \right)^{\phi_q}$ ϕ_q is the intermittency index

- Higher order NFM scale with second-order NFM **(F-scaling)**:

$$
F_q(M) \propto F_2(M)^{\beta_q}
$$

\n
$$
\beta_q = \frac{\phi_q}{\phi_2}
$$

\n
$$
\beta_q \text{ is quantitatively described by the scaling exponent, } \nu
$$

\n
$$
\beta_q \propto (q-1)^{\nu}
$$

• Scaling exponent: quantifies the multiplicity fluctuations \Rightarrow can be used to investigate criticality in systems.

ALICE: Measurements at **2.76 TeV**

F_a **ALICE Preliminary** \subseteq 0.6 $Pb-Pb, \sqrt{s_{_{NN}}}$ = 2.76 TeV Centrality 0-5%, $|\eta| \le 0.8$ $0.4 \leq p_{\perp} \leq 1.0$ GeV/c 0.4 $q = 2$ $q = 3$ 0.2 F^2 **ALICE** \mathbf{C} ... AMPT(String melting ON, Rescattering OFF) **HIJING** 1.5 $-$ - Toy MC $q = 4$ $q = 5$ 0.5 9 9 $\ln M^2$ In M^2 ALI-PREL-513923

M-Scaling: Data and MC comparison **Scaling exponent independent of** p_{T} **bin width** in the low p_{τ} region

Analysis Note <https://alice-notes.web.cern.ch/node/996>

Datasets

- Pb-Pb, 5.02 TeV

ALICE: LHC15o_pass2, LHC18q,r_pass3: **HIJING:** MB LHC20j6a, MB LHC20e3a **EPOS_LHC**: LHC22d1d2, LHC22d1c2 (Gen) **AOD252**

- Track Cuts

FilterBit: 768

Trigger bit: kINT7

sharedcls/ncrows $<$ Mean values of shcls/ncrows vs $\rm p_T^{}$ for $\rm \Delta p_T^{} = 0.1$

- Pile Up Cuts:

Data: Standard cut

fEventCuts.SetRejectTPCPileupWithITSTPCnCluCorr(kTRUE);

HIJING: Generated and out of bunch pileup cuts

 \Rightarrow from [twiki](https://twiki.cern.ch/twiki/bin/view/ALICE/AliDPGtoolsPileup)

Event Cuts

Centrality: 0-5%; Centrality estimator: V0M; |η| < 0.8, full azimuth

Statistical Uncertainties : Sub-sampling method

Datasets

- Pb-Pb, 2.76 TeV

ALICE: LHC10h AOD160 **HIJING:** MB LHC11a10a_bis **AMPT:** LHC13f3a, LHC13f3b, LHC13f3c (Gen)

- **Track Cuts**

FilterBit: 768 Trigger bit: kMB

Event Cuts

Centrality: 0-5%; Centrality estimator: V0M; |η| < 0.8, full azimuth

Statistical Uncertainties : Sub-sampling method

Closure of different orders

$0.4 \leq \textsf{p}_{_{\textsf{T}}}\leq 1.0 \text{ GeV/c}$

- Closure with HIJING shown for all the orders of *F q* .

M-scaling

- Power-law growth of normalized factorial moments with increasing phase space bins (M) indicate scale-invariant pattern in the distribution of particles.

M-scaling and comparison

Significant difference between data and MC, similar to what was observed in 2.76 TeV Scale-invariant density fluctuations in ALICE data but absent in MC (HIJING (non-collective), EPOS LHC (collective))

F-scaling and scaling exponent

F-scaling observed in ALICE data and the resultant scaling exponent is calculated.

Variation of scaling exponent with p_{τ}

The scaling exponent is independent of p_{T} bin and p_{T} bin width within uncertainties Scaling exponent values are close to the predicted values by theory of critical fluctuations.

Variation of scaling exponent with centrality

A slight decrease in the values with increasing centrality for both the $\overline{\rho}_{\sf T}^{}$ bins.

Summary

- Charged particle density fluctuations are studied in Pb-Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV.
- *Intermittency* signal is observed at higher M (higher bin resolution).
- F-scaling observed at higher M and value of scaling exponent close to the predicted ones.
- \bullet Scaling exponent is independent of p_{τ} and has a weak dependence on centrality.
- Difference in the scaling properties of charged particle multiplicity distributions between ALICE data and MC as the binning resolution increases.

THANK YOU

BACKUP

Difference between 2.76 TeV and 5.02 TeV $(0.4 \leq p_{_{\rm T}} \leq 1.0$ GeV/c)

 ALICE-STAR INDIA MEET 23/11/2023

Multiplicity Distributions and average bin content

 $0.4 \leq \text{p}_{\text{T}} \leq 1.0 \text{ GeV/c}$

For datasets of Pb-Pb at 2.76 TeV, 5.02 TeV and Xe-Xe at 5.44 TeV in the accepted track cuts

Multiplicity effect

Multiplicity effect

Multiplicity tail effect

No Effect

Systematics

Results (ALICE, Pb-Pb, 5.02 TeV) **0.4 ≤ pT ≤ 0.6 GeV/c**

● Scaling exponent different from 1.3 => system formed is not describable by GL theory

 ALICE-STAR INDIA MEET 23/11/2023

Results (ALICE, Pb-Pb, 5.02 TeV) **0.6 ≤ pT ≤ 0.8 GeV/c**

HIJING: MONTE Carlo closure,

 ALICE-STAR INDIA MEET 23/11/2023

HIJING: MONTE Carlo closure, q=3

HIJING: MONTE Carlo closure, q=4

HIJING: MONTE Carlo closure, q=5

$HIJING: MONTE$ Carlo closure, 0.4 $\leq p_{\tau} \leq 0.6$ GeV/c

 $0.4 \leq p_{\overline{I}} \leq 0.6 \text{ GeV/c}$

 $0.4 \le p_{T} \le 0.6$ GeV/c **0-5% centrality**

 $0.4 ≤ p_T ≤ 0.6$ GeV/c **5-10% centrality**

 $0.4 \le p_T \le 0.6$ GeV/c **10-20% centrality**

 $0.4 \le p_{T} \le 1.0$ GeV/c **5-10% centrality**

 $0.4 \le p_T \le 1.0$ GeV/c **10-20% centrality**

