

(Intermittency analysis)

Salman Malik Supervisor: Ramni Gupta (University of Jammu, Jammu & Kashmir, India)

JIRA: <u>https://alice.its.cern.ch/jira/browse/PWGCF-204</u> AN: <u>https://alice-notes.web.cern.ch/node/1419</u>

ALICE-STAR INDIA MEET 21-24 Nov, 2023

Outline

- Physics Motivation & Observables
- Dataset
- Results
- Summary

Motivation & Observables

- Large density fluctuations -> final stage collective behaviour as QGP expands.
- Fluctuations => sensitive to the phase transition.
- These can be detected by performing intermittency analysis

=> works by measuring Normalized Factorial Moments (NFM).

- Suggested that the presence of intermittency:
 - dynamical fluctuations
 - self-similarity
- •2D phase space ($\eta \phi$) is divided into MxM bins (self-similar)
- $F_q(M) \Rightarrow$ NFM are averaged over the bins to measure local fluctuations.

$$egin{aligned} F_q(M) &= rac{rac{1}{N}\sum_{e=1}^Nrac{1}{M}\sum_{m=1}^Mf_q(n_{me})}{\left(rac{1}{N}\sum_{e=1}^Nrac{1}{M}\sum_{m=1}^Mf_1(n_{me})
ight)^q}\ f_q(n_{me}) &= \prod_{j=0}^{q-1}(n_{me}-j)\ q\,:\, ext{order of the moment}\ e\,:\,event\ n_{ie}\,\geq\,q \end{aligned}$$

R.C. Hwa and C. B. Yang, Acta Physica Polonica B . Vol. 48 Issue 1 (2017) R.C. Hwa & C.B. Yang, PRC 85, 044914 (2012), nucl-ex:1411.6083 **R.C. Hwa and M.T. Nazirov, Phys. Lett. 69, 741 (1992).**

23/11/2023

Motivation & Observables

- NFM are sensitive to:
 - particle distribution in the bins
 - correlation between bins
- Scale-invariant form of particle distribution in the phase space
 - => NFM scale with the number of bins M (M-scaling)

 $F_q \, \propto \, \left(M^2
ight)^{\phi_q} \ \phi_q \, {
m is the intermittency index}$

• Higher order NFM scale with second-order NFM (F-scaling):

$$egin{aligned} F_q(M) \propto F_2(M)^{eta_q} \ eta_q &= rac{\phi_q}{\phi_2} \ eta_q ext{ is quantitatively described by the scaling exponent, }
u \ eta_q &\propto (q-1)^
u \end{aligned}$$

• Scaling exponent: quantifies the multiplicity fluctuations => can be used to investigate criticality in systems.

ν	Theory/Model
1.304	GL theory for 2nd order PT
1.0	Ising Model
1.41	SCR Model
1.79 ± 0.10	AMPT
1.743	UrQMD (RHIC en.)
1.75 ± 0.12	EPOS3 Hydro

ALICE: Measurements at 2.76 TeV

M-Scaling: Data and MC comparison

9

 $\ln M^2$

LL. ALICE Preliminary **⊂**0.6 Pb-Pb, Vs_N = 2.76 TeV > Centrality 0–5%, $|\eta| \le 0.8$ $0.4 \le p_{_{\rm T}} \le 1.0 \, {\rm GeV}/c$ 2.5 0.4 *q* = 3 q = 20.2 1.5 ц^в? ALICE · · · AMPT(String melting ON, Rescattering OFF HIJING 1.5 Toy MC 0.5 q = 5q = 40.5

Scaling exponent independent of p_T bin width in the low p_T region

Analysis Note https://alice-notes.web.cern.ch/node/996

ALI-PREL-513923

23/11/2023

9

In M²

Datasets

- Pb-Pb, 5.02 TeV

ALICE: LHC15o_pass2, LHC18q,r_pass3: HIJING: MB LHC20j6a, MB LHC20e3a EPOS_LHC: LHC22d1d2, LHC22d1c2 (Gen) AOD252

- Track Cuts

FilterBit: 768

Trigger bit: kINT7

sharedcls/ncrows < Mean values of shcls/ncrows vs p_T for $\Delta p_T = 0.1$

- Pile Up Cuts:

Data: Standard cut

fEventCuts.SetRejectTPCPileupWithITSTPCnCluCorr(kTRUE);

HIJING: Generated and out of bunch pileup cuts

=> from twiki

Event Cuts

<u>Centrality:</u> 0-5%; <u>Centrality estimator</u>: V0M; $|\eta| < 0.8$, full azimuth

Statistical Uncertainties : Sub-sampling method

Datasets

- Pb-Pb, 2.76 TeV

ALICE: LHC10h AOD160 HIJING: MB LHC11a10a_bis AMPT: LHC13f3a, LHC13f3b, LHC13f3c (Gen)

- Track Cuts

FilterBit: 768 Trigger bit: kMB

Systematic observable	Standard	Variations
event vertex Z	10.0 cm	7.0 cm
filterbit	768	128
B-field polarity	both	positive, negative
min # of crossed rows	80	100
min # of TPC clusters	70	80

Event Cuts

<u>Centrality:</u> 0-5%; <u>Centrality estimator</u>: V0M; $|\eta| < 0.8$, full azimuth

Statistical Uncertainties : Sub-sampling method

Closure of different orders

$0.4 \le p_T \le 1.0 \text{ GeV/c}$

- Closure with HIJING shown for all the orders of F_q .

M-scaling

- Power-law growth of normalized factorial moments with increasing phase space bins (M) indicate scale-invariant pattern in the distribution of particles.

M-scaling and comparison

Pb–Pb, $\sqrt{s_{_{\rm NN}}}$ = 5.02 TeV

ALICE Preliminary

ALI-PREL-549715

Significant difference between data and MC, similar to what was observed in 2.76 TeV Scale-invariant density fluctuations in ALICE data but absent in MC (HIJING (non-collective), EPOS LHC (collective))

F-scaling and scaling exponent

F-scaling observed in ALICE data and the resultant scaling exponent is calculated.

Variation of scaling exponent with p_{T}

The scaling exponent is independent of p_{T} bin and p_{T} bin width within uncertainties Scaling exponent values are close to the predicted values by theory of critical fluctuations.

Variation of scaling exponent with centrality

A slight decrease in the values with increasing centrality for both the p_{τ} bins.

Summary

- Charged particle density fluctuations are studied in Pb-Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV.
- Intermittency signal is observed at higher M (higher bin resolution).
- F-scaling observed at higher M and value of scaling exponent close to the predicted ones.
- Scaling exponent is independent of p_{T} and has a weak dependence on centrality.
- Difference in the scaling properties of charged particle multiplicity distributions between ALICE data and MC as the binning resolution increases.

THANK YOU

BACKUP

Difference between 2.76 TeV and 5.02 TeV ($0.4 \le p_T \le 1.0 \text{ GeV/c}$)

ALICE-STAR INDIA MEET

Multiplicity Distributions and average bin content

 $0.4 \le p_{_T} \le 1.0 \text{ GeV/c}$

For datasets of Pb-Pb at 2.76 TeV, 5.02 TeV and Xe-Xe at 5.44 TeV in the accepted track cuts

Multiplicity effect

Multiplicity effect

Multiplicity tail effect

No Effect

Systematics

Systematic observable	Standard	Variations
event vertex Z	10.0 cm	7.0 cm
filterbit	768	128
B-field polarity	both	positive, negative
min # of crossed rows	80	100
min # of TPC clusters	70	80

 $0.4 \le pT \le 0.6 \text{ GeV/c}$

- M-scaling observed => Presence of intermittency
- F-scaling observed
- Scaling exponent different from 1.3 => system formed is not describable by GL theory

 $v = 1.39 \pm 0.02$

Results (ALICE, Pb-Pb, 5.02 TeV)

 $0.6 \le pT \le 0.8 \text{ GeV/c}$

HIJING: MONTE Carlo closure,

ALICE-STAR INDIA MEET

23/11/2023

HIJING: MONTE Carlo closure, q=3

HIJING: MONTE Carlo closure, q=4

HIJING: MONTE Carlo closure, q=5

HIJING: MONTE Carlo closure, $0.4 \le p_{\tau} \le 0.6$ GeV/c

 $0.4 \le p_{\tau} \le 0.6 \text{ GeV/c}$

 $0.4 \le p_T \le 0.6 \text{ GeV/c}$ 0-5% centrality

 $0.4 \le p_{\tau} \le 0.6 \text{ GeV/c}$ 5-10% centrality

 $0.4 \le p_T \le 0.6 \text{ GeV/c}$ 10-20% centrality

 $0.4 \le p_T \le 1.0 \text{ GeV/c}$ 5-10% centrality

 $0.4 \le p_T \le 1.0 \text{ GeV/c}$ 10-20% centrality

