Study on measurement of cumulants of net-proton distributions for Au +Au collisions at $\sqrt{S_{NN}}$ = 7.7 GeV in BES-II

Bappaditya Mondal

Supervisor: Prof. Bedangadas Mohanty

ALICE-STAR India collaboration meet 24th Nov, 2023

National Institute of Science Education and Research, Bhubaneswar, India

Outline

- 1) Motivation
- 2) Observables
- 3) Previous results
- 4) Current Analysis status
- 5) Summary & Outlook

Motivation

- → Goal: To search for QCD critical point
- Varying collision energy varies Temperature (T) and Baryon Chemical Potential (μ_{B}).
- Fluctuation of conserved quantities are sensitive observable to study QCD critical point

Observables

Higher order cumulants of net proton (proxy for net-baryon) distribution

 $\begin{array}{l} C_{1} = \langle N \rangle & here , \delta N = N - \langle N \rangle \\ C_{2} = \langle (\delta N)^{2} \rangle \\ C_{3} = \langle (\delta N)^{3} \rangle \\ C_{4} = \langle (\delta N)^{4} \rangle - 3 \langle (\delta N)^{2} \rangle^{2} \\ C_{5} = \langle (\delta N)^{5} \rangle - 5 \langle (\delta N)^{3} \rangle \langle (\delta N)^{2} \rangle \\ C_{6} = \langle (\delta N)^{6} \rangle - 15 \langle (\delta N)^{4} \rangle \langle (\delta N)^{2} \rangle - 10 \langle (\delta N)^{3} \rangle^{2} + 30 \langle (\delta N)^{2} \rangle^{3} \end{array}$

$$\frac{C_2}{C_1} = \frac{\sigma^2}{M} \qquad \frac{C_3}{C_2} = S \sigma \qquad \frac{C_4}{C_2} = \kappa \sigma^2$$

 $M = Mean, \sigma^2 = Variance$ $S = Skewness, \kappa = Kurtosis$

- Higher order cumulants of net proton multiplicity distributions are sensitive observables for QCD crirtical point
- → Related to correlation length $C_2 \sim \xi^2$ $C_4 \sim \xi^7$

 In presence of critical point: Non-monotonic collision energy dependence of C₄/C₂

र्। जि

M.A. Stephanov.

Phys.Rev.Lett. 107 (2011) 052301

Previous result from BES-I

- Collision energy dependence of ratio of fourth to secondorder cumulant of net-proton distribution (from BES-I) shown here
- Measurements are shown for 0-5% and 70-80% Au+Au collision centrality class as a function of various collision energies
- Non monotonic dependence over collision energy
- However at lower energy larger statistical uncertainty
- Analysis in BES-II needed for higher statistical precision
- Here we only focus on higher statistics data collected at 7.7 GeV collision energy in BES-II

STAR Detector

 Two main detectors for current analysis: Time Projection Chamber & Time of Flight

Analysis procedure

1/ Data set details	2/ Run-by-run Quality Assurance (QA)	3/ Event level QA
4/ Track level QA	5/ Bad event remove	6/ Centrality determination
7/ Analysis acceptance	8/ Cumulants result (efficiency uncorrected)	9/ Extended centrality *
	10/ Summary & Outlook	

Data sets details

- → Au + Au at $\sqrt{s_{NN}}$ = 7.7 GeV (BES-II)
- Run ID : 22031042 22121018 (total 2696 runs)
- Trigger ID : 810010,810020,810030 (minimum bias)
- → Production tag : P22ia
- Total data size : 52 million events (with |V_z| < 50 cm & V_r < 2 cm)

Run by run QA & event QA check

- V_x , V_y , V_r , ZDC, tofmult, tofmatched, p_T , nhitsfit, nhitsdedx, $n\sigma_p$ etc are also considered for QA check ==> 4.9 million events (379 bad run) excluded
- |V_z| < 50 cm & V_r < 2 cm is used for event selection

Track QA

Pileup event removal

Bad events from sDCAxy & sDCAz

- Obtain mean and sigma of <sDCAz>, <sDCAxy> for 9 individual
- Events 10 sigma (σ) away from mean value are removed. 1524 events rejected

Centrality definition

 Refmult3: (Charge particle multiplicity with |η|< 1.0 excluding protons and anti protons) distribution for centrality determination
 Compare with BES-I result

Centrality class (%)	0-5	5 - 10	10-20	20-30	30-40	40-50	50-60	60- 70	70-80
RefMult3 cut (BES-I)	270	225	155	105	68	41	23	11	5
RefMult3 cut (BES-II)	307	254	173	116	74	45	26	13	6

Analysis cut

Proton selection	Anti-proton selection		
y < 0.5 & 0.4 < p _T < 0.8 GeV/c :	y < 0.4 : 0.4 < pt < 0.7 GeV/c use TPC	Au+Au S _{NN} = 7.7 GeV BES-II	- 10 ⁵
TPC (nσ _p < 2)	(-2 < no [°] _p < 2) 0.7 < pt < 2.0 GeV/c use TPC +TOF		10 ⁴
→ lvl < 0.5 & 0.8 < n < 2 GeV/c ⁻¹			10 ³
TPC+TOF ($ n\sigma_p < 2, 0.6 < m^2 < 1.2 \text{ Gev}^2/c^4$)	→ 0.4 < y < 0.5 : 0.4 < pt < 0.7 Gev/c use TPC (-1 < no < 2)	0.5	10 ⁴
	0.7 < pt < 2.0 use TPC + TOF	proton	
		2 -1.5 -1 -0.5 0 0.5 1 1.5 V	2

→ PID purity > 90%

Centrality dependence of net proton multiplicity distribution

- Distributions are not corrected for proton and antiproton reconstruction efficiency in TPC and TOF.
- Mean & sigma of the distributions decreases from central to peripheral

Centrality dependence of net proton cumulants (eff. uncorr.)

→ Centrality bin width correction applied

- Increasing trend for cumulants as a function of centrality
- Cumulants ratios show weak dependece over centrality

Centrality dependence of net proton cumulants (eff. uncorr.)

- ➔ Efficiency uncorr. Cumulants
- Centrality bin width correction applied applied
- $C_5 \& C_5/C_1$ consistent within uncertainty
- → C₆ & C₆/C₂ (of BES-II) have values close to zero as compared to BES-I

Study the effect of different centrality definitions on net-proton cumulants

- 1. Three centrality definition : RefMult3 (default) ($|\eta| < 1.0$)
 - RefMult3-1 (|η|< 1.4)
 - RefMult3-2 (|η|< 1.6)
- 2. Study centrality dependence of cumulants using these three centrality definitions.

3. Cumulants are efficiency uncorrected & CBW corrected

- RefMult3 distributions for three different definitions are plotted here
- Compare with BES-I result

Centrality dependence of cumulants for different centrality definitions (efficiency uncorr.)

Summary & outlook

- 1. Shown basic QA plots, centrality determination
- 2. Presented centrality dependence of efficiency uncorrected net proton cumulants upto sixth order
- 3. Good improvement in centrality resolution as we widen charge particle acceptance for centrality selection from $||\eta| < 1.0$ to $|\eta| < 1.6$.
- 4. For centrality definition (7.7 GeV) we plan to take RefMult3-2 (with $|\eta| < 1.6$) for better centrality resolution
- 5. Will focus on effciency corrected net-proton cumulants
- 6. For my thesis I will work on 7.7 and 9.2 GeV data set in BES-II

Acknowledgements

→ We thank the STAR focus group and STAR collaboration for opportunity and support.

CBWC

• $\mathbf{C}_{n} = \mathbf{W}_{r} * \mathbf{C}_{n,r}$ C_n : is nth order cumulants N₂ :is number of events in rth refmutl3 bin • W, = n/ N N : is total number of events

• For error:
$$Err C_n = \sqrt{(\sum_{r} (W_r)^2 * (Err C_{n,r})^2)}$$

Bootstrap method

- Bootstrap method is a re-sampling method to estimate statistical error
- Does not involve the complexities of the standard error propagation method →
- It uses Monte-Carlo algorithm to estimate the statistical error →
- Construct B number of independent bootstrap samples X_1^{\prime} , X_2^{\prime} , X_3^{\prime} , ..., X_8^{\prime} , each consisting of n data points randomly drawn from the random sample X with replacement
- Evaluate the estimator in each of these bootstrap samples: $\hat{e_b} = \hat{e}(X_b) \qquad b = 1, 2, 3, \dots, B.$ The sampling variance of the estimator: $Var(\hat{e}) = \frac{1}{B-1} \sum_{b=1}^{B} (\hat{\bar{e}} \hat{e_b})^2 \qquad \text{where,} \qquad \hat{\bar{e}} = \frac{1}{B} \sum_{b=1}^{B} (\hat{\bar{e}_b})$
- →

Centrality Definition

 Refmult3: (Charge particle multiplicity with |η|< 1.0 excluding protons and anti protons) distribution for centrality determination

Corr. to RefMult3: → has a negligible dependence on luminosity

- No luminosity corrections applied
- → V_z corrections applied
- Refmult3 is obtained for each V_z window (2 cm for my analysis).
- Fit function: f(x) = [0]* Tmath::Erf(-[1]*(x-[2])) + [0]
- After fitting par [2] is obtained for each V_z window

V_z correction factor:
[0]
3]*
$$x^3$$
+[2]* x^2 +[1]* x +[0]

nsigma (nσ) shift

- → Corrected nsigma ($n\sigma$) shift for the analysis
- → no distribution is shifted as a function of rapidity and p_{τ} bin