

CMW Search in Isobar Collision

Aditya Rana, Ankita S. Nain, Navneet K. Pruthi, Madan M. Aggarwal

(DAV College, Chandigarh)

ALICE-STAR India Collaboration Meeting, Jammu University 24.11.2023

Outline

★ Introduction

★ Method

- ★ Data Selection
- ★ Results
- ★ Summary and Outlook

Introduction and motivation

Chiral anomalies and strong magnetic field induces interesting macroscopic effects in QGP.

Chiral Magnetic Effect (CME)

- \star Generation of electric current due to chirality imbalance in the presence of an external magnetic field.
- \star Electric Charges gets seperated perpendicular to reaction plane, along magnetic field created by spectator protons.

Chiral Separation Effect (CSE)

- \star Generation of axial current along the direction of external magnetic field due to the presence of non zero electric charge density.
- ★ Axial Charges get separated perpendicular to reaction plane, along magnetic field created by spectator protons.

 $j_V = \frac{N_c e}{2 \Pi^2} \mu_A B$

 $j_A = \frac{N_c e}{2 \Pi^2} \mu_V B$

Chiral Magnetic Wave (CMW)

Coupling of chiral and electric charge densities and currents created by both CSE and CME respectively, results in collective excitation of QGP.

- ★ CMW creates Electric Quadrupole.
- ★ Electric Quadrupole results in a greater concentration of positive charges at poles (as **B** is oriented out of plane) than at Equator (within reaction plane).
- ★ Charge separation leads to different elliptic flow for positive and negative charge particles.
- \star Thus CMW leads to charge dependent elliptic flow.

Method

 \star Electric Quadrupole moment induced by CMW leading to splitting in $v₂$ of charge particles is predicted to be proportional to charge asymmetry (A).

$$
{\rm v}_2^\pm - {\rm v}_{2,{\rm base}}^\pm = \mp \frac{\rm r}{2} {\rm A} \hspace{2cm} {\rm A} = \frac{{\rm N}_+ - {\rm N}_-}{{\rm N}_+ + {\rm N}_-}
$$

- ★ Experimentally, Δv_2 vs A_{ch} gives r.
- Another way is measuring covariance of v_2^{\pm} and A, $\langle v_2^{\pm} A \rangle \langle A \rangle \langle v_2^{\pm} \rangle$ as function of centrality (3-point correlator or 3-particle correlator),

$$
<\text{v}_2^\pm\text{A}>-<\text{A}><\text{v}_2^\pm>\;\; \approx \;\; \mp \,\mathrm{r}(<\!\mathrm{A}^2>\,-<\text{A}>^2\,)/2 \approx \;\; \mp \,\mathrm{r}\sigma_{\text{A}}^2/2
$$

★ Δ Integral correlator (ΔIC) ,

$$
\Delta\mathrm{IC} = \ <\mathrm{v}_2^- \mathrm{A} > - <\mathrm{A} > <\mathrm{v}_2^-> - <\mathrm{v}_2^+ \mathrm{A} > - <\mathrm{A} > <\mathrm{v}_2^+> \ = \ \mathrm{r}\sigma_A^2
$$

ALICE Collab.: Phys. Rev. C 93 (2016) 044903, arXiv:2308.16123v1 [nucl-ex]

Data selection

\star Run 18

- ★ Collision Type:
	- Zr+Zr @ 200 GeV (~1.5B Events Analysed) Ru+Ru @ 200 GeV (~1.5B Events Analysed)

Event Cuts

Track Cuts

★ -35 < V_z < 25 cm
\n★ |V_{Z,TPC}-V_{Z,VPD}| < 5 cm
\n★
$$
\sqrt{V_x^2 + V_y^2}
$$
 < 2.0 cm

$$
\star \quad N_{\text{HitsFit}} / N_{\text{HitsPoss}} > 0.52
$$
\n
$$
\star \quad DCA < 3 \text{ cm}
$$
\n
$$
\star \quad 0.2 < p_{\text{T}} < 2 \text{ GeV/c}
$$
\n
$$
\star \quad |\eta| < 1
$$

Integral covariance of **v**₂ and A

- \star v_2 is calculated using cumulant method.
- \star η gap of 0.4 is taken between RFP and POI.
- ★ Both Ru+Ru and Zr+Zr shows $\mathsf{similar}\>$ splitting of v_{2} and $\mathsf{\mathsf{A}}$ covariance.

Slope (r) vs Centrality

Slope r,

$$
\text{r}=\frac{\Delta \text{IC}}{\sigma_{\text{A}}^2}
$$

- \star $\sigma_{\rm A}^2$ is determined by fitting **A** distribution with gaussian distribution.
- \star Both Ru+Ru and $7r+7r$ shows similar trend within error bars.
- \star Slope (r) for mid centrality is around 0.013 .
- \star Ratio, $(r_{\text{Ru+Ru}})/(r_{Zr+Zr})$ is around 1 within error hars.

Integral covariance of **v**₃ and A

- \star No separation in covariance of $v₃$ and **A** for positive and negative charged particles.
- ★ Slope (r) for third harmonic is observed to be close to zero.

Comparison of slope (r) for 2nd and 3rd harmonics

★ Slope (r) for 3rd harmonic is reduced significantly compared to 2nd harmonic and is close to zero.

Comparing both methods

Gang Wang (UCLA) (Δv₂ vs **A**)

- \star Pions (0.15 < p_T < 0.5 GeV/c)
- \star Both results are comparable.

Summary

- \star ∆IC of **v**₂ and **A** is used to calculate CMW slope (**r**).
- ★ Both Ru+Ru and Zr+Zr shows similar splitting of integral correlator for positive and negative charged particles. Also exhibit similar value of slope (**r**) for different collisions centralities.
- ★ Integral covariance of **v**₃ and **A** for positive and negative charged particle agrees within errors.
- ★ Slope (**r**) measured from delta integral correlator method are comparable with slope (**r**) measured from Δv₂ vs **A** method.

Outlook

- \star Extract CMW fraction using ESE.
- Do the analysis for pions.

THANK YOU

Backup

0.06 slope parameter • ALICE, Pb-Pb at $\sqrt{s_{NN}}$ = 2.76 TeV 0.05 ***** STAR, Au-Au at $\sqrt{s_{NN}}$ = 200 GeV 0.04 Different energies arXiv:1512.05739v2 [nucl-ex] 0.03 and cuts 0.02 0.01 0 -0.01^L 10 20 30 40 50 60 70 Centrality (%)