

Azimuthal correlations between Λ_c baryons and charged particles in pp collisions at $\sqrt{s} = 13$ TeV

Samrangy Sadhu

Jadavpur University, Kolkata

ALICE-STAR India Collaboration Meeting, November 2023

Heavy quarks : a unique probe

- Heavy quarks: charm and beauty, predominantly produced by the parton-parton hard scattering -> perturbative QCD can be applied.
- In heavy-ion collisions : Quark-gluon plasma (QGP) produced
 - -> heavy quarks are produced before QGP ($t_{QGP} \sim 1 \text{ fm/c}$ and $t_Q = 1/2m_Q \leq 0.1 \text{ fm/c}$)
 - -> Experience the complete evolution of QGP medium

• QCD energy loss is expected to occur via both inelastic (radiative energy loss via medium-induced gluon radiation) and elastic (collisions with the QGP) constituents) processes.

> Therefore, heavy quarks act as important tools for characterizing the medium formed in heavy-ion collisions.

 $m_{\rm b} \sim 4.2 ~{\rm GeV/c^2}$

 $t_b \sim 0.03 \, {\rm fm/c}$

Beauty

Heavy-flavour fragmentation through correlation and jet measurements

Fragmentation -> shower of quarks and gluons due to the strong force, mediated by gluons -> a jet of collimated particles

Regarding fragmentation, additional insights compared to single-particle studies are offered by:

→ Charm-hadron tagged jets:

- \rightarrow access to the original parton kinematics
- \rightarrow constrain the fragmentation functions
- → Azimuthal correlations of charm hadrons with charged particles
 - → description of the jet shape and its particle composition
 - → sensitivity to production mechanisms

$(1/N_{jet}) dN/dz_{\parallel}^{cl}$ 5 – ALICE, pp, \sqrt{s} = 13 TeV \circ Λ_{c}^{+} -tagged jets charged jets, anti- $k_{\rm T}$, R = 0.4D⁰-tagged jets $T \leq p_{\mathrm{T}}^{\mathrm{jet\,ch}} < 15 \,\mathrm{GeV}/c, |\eta_{\mathrm{jet}}| \leq 0.5$ $3 \le p_{\tau}^{h} < 15 \text{ GeV}/c, |y^{h}| \le 0.8$ 2.5 1.5 Λ_c^+/D^0 **PYTHIA 8 Monash** data PYTHIA 8 CR-BLC Mode 2 1.5 1------0.5 0.6 0.8 0.5 0.7 0.9 0.4

arXiv:2301.13798

Exploring Λ_c -h azimuthal correlations

Why do we study HF azimuthal correlations in pp collisions?

- \rightarrow Characterise the charm production
- \rightarrow Detail the internal structure of charm-induced jets
- \rightarrow Validate MC models reproducing the charm showering
- → Reference for larger collision systems

<u>First measurement</u> of Λ_c -h azimuthal correlations:

- \rightarrow detail charm fragmentation when the final state is a baryon \rightarrow hint of softer fragmentation in Λ_c -jets than D⁰-jet
- \rightarrow influence of different production mechanisms (coalescence, color reconnection, decay from higher-mass charm states)
- → benchmark for MC models

- Selection of Λ_{c} + baryon candidates through Machine Learning
- Angular correlation distributions between Λ_c candidates and "associated" particles

• Corrections:

 \cap Λ_c ("trigger") and associated track efficiency \rightarrow online weighting for Λ_{c^+} and associated part reconstruction Event mixing and sideband subtraction → detector inhomogeneities and background contribution Ο secondary track contamination \rightarrow secondary particles (interaction with detector material ...) Ο \rightarrow bias in correlation induced by the candidate selection \bigcirc b $\rightarrow \Lambda_c$ bias from decay topology beauty feed-down \rightarrow subtraction via Pythia8 templates Ο \rightarrow Remove contributions from $\Sigma_c^{0,++}$ (2455) $\rightarrow \Lambda_c^{++} \pi^{\mp}$ \bigcirc Soft- π

• Systematics

• Study of correlation properties

Analysis Strategy

Data periods : 2016, 2017, 2018

MonteCarlo productions: HF enriched: For ML and trigger efficiency estimation General-purpose: For associated track efficiency estimation

Reconstruction of Λ_c baryons

- Decay channel : $\Lambda_c \rightarrow pK^-\pi^+$
- Selection of Ac candidates based on Machine Learning multiclassification algorithm - XGBoost (integrated in hipe4ml package)
- Preselection: single-track quality criteria, loose topological and PID selections
- The second stage of the selection foresees the use of a binary classification algorithm to separate the two contributions, prompt Ac and combinatorial background

Background: 2nd order pol. Signal: Gaussian.

S and B, extracted from the efficiency weighted distributions, are used in the correlation extraction

Two-particle azimuthal correlations

Two-particle angular correlation function is characterized by per-trigger yield of associated charged particle :

Associated hadron yield per trigger:

$$\frac{1}{N_{trig}} \, \frac{d^2 N^{pair}}{d\Delta \eta d\Delta \phi} \, ;$$

where,

$$S\left(\Delta\eta,\Delta\phi\right) = \frac{1}{N_{trig}} \frac{d^2 N^{same}}{d\Delta\eta d\Delta\phi}$$

$$B(\Delta\eta,\Deltaarphi)=rac{d^2N^{mixed}}{d\Delta\eta d\Deltaarphi}$$

 $= B(0,0) \times \frac{B}{B}$

The differential measure of per-trigger distribution of the associated charged particles in the same event

The background distribution function, where N^{mixed} is the number of mixed event pairs

- has been accounted.
- efficiency maps are prepared as a function of pT, η and z-vtx position (for tracking efficiency correction).
- Enriched and general purpose MC samples are used for trigger and tracking efficiency corrections respectively.
- Correlation entries are weighted by 1/[ε(trig)* ε(track)]

Efficiency correction

• The limited detector acceptance and efficiency for the reconstruction and selection of trigger candidates and associated particles

• 2-D trigger efficiency maps are prepared as a function of pT and multiplicity (for trigger efficiency correction) and 3-D tracking

- event-mixing technique.
- selected events.
- Every processed event is stored in an event pool based on its topology. The pools store events based on selection of multiplicity and primary vertex position.

Event mixing technique

• The correlation distributions are corrected for the limited detector acceptance and detector spatial inhomogeneities using the

• Mixed events are obtained by taking the trigger candidate from the event N and the associated tracks from other preceding

Event mixing correction and Background subtraction

The correlation distributions are corrected for the limited detector acceptance and detector spatial inhomogeneities using the event mixing technique.

$$\frac{d^2 N^{corr} \left(\Delta \varphi \Delta \eta \right)}{d \Delta \varphi d \Delta \eta} = \frac{\frac{d^2 N^{SE} \left(\Delta \varphi \Delta \eta \right)}{d \Delta \varphi d \Delta \eta}}{\frac{d^2 N^{ME} \left(\Delta \varphi \Delta \eta \right)}{d \Delta \varphi d \Delta \eta}} \frac{d^2 N^{ME} \left(0, 0 \right)}{d \Delta \varphi d \Delta \eta}$$

Removal of background under the signal peak : Side-Band technique

$$(\frac{d^2 N^{corr}}{d\Delta \varphi d\Delta \eta}) = (\frac{d^2 N^{corr}}{d\Delta \varphi d\Delta \eta})_{s+bkg} - \frac{B}{B_{sb}} (\frac{d^2 N^{corr}}{d\Delta \varphi d\Delta \eta})_{LSB+RSB}$$

B=>The background under the signal mass peak that we estimate from the invariant mass fit

 $B_{sb} =>$ The integral of the invariant mass distribution in the side-band region

/IE_Sign_	PtInt_p8
ntries 1	256874
lean x	1.566
lean y 🚽	-0.0082
td Dev x	1.812
td Dev y	0.5027
\sim	<u></u>

Removal of secondary particle contamination

- Secondary particles surviving DCA cuts, generally coming from:
 - interaction of primary tracks with the detector material
 - decays of strange hadrons
- Ratio of $\Delta \varphi$ distribution of primary track accepted over all tracks distribution.
- From the ratio between the distribution
 - \rightarrow fraction of residual secondary track is flattish along $\Delta \varphi$
 - \rightarrow inhomogeneities not larger than ~1%
- secondary track $\Delta \varphi$ template.

• A bin-by-bin correction was applied by multiplying the azimuthal correlation distribution to the moving average of

 $f_{prompt} =>$ fraction of prompt Λ_c in the reconstructed sample

$$f_{prompt} = 1 - \frac{N^{\wedge_c \, from \, b}}{N^{\wedge_c \, inclusive}}$$

where,
$$N^{\wedge_{c} from b} = 2 \frac{d\sigma_{FONLL}^{\wedge_{c} from b}}{dp_{T}} \Delta y \Delta p_{t} (Acc \times \varepsilon)_{feed-dc}$$

$$f_{prompt} = \frac{(Acc \times \varepsilon)_{prompt} \frac{d\sigma_{FONLL}^{\wedge c \ prompt}}{dp_{T}}}{(Acc \times \varepsilon)_{prompt} \frac{d\sigma_{FONLL}^{\wedge c \ prompt}}{dp_{T}} + (Acc \times \varepsilon)_{feed-down} \frac{d\sigma_{FONLL}^{\wedge c \ prompt}}{dp_{T}}}{dp_{T}}}{dp_{T}}$$

Corrected distribution :

$$\tilde{C}_{\text{prompt }\Lambda_{c}}(\Delta\varphi) = \frac{1}{f_{\text{prompt}}} \left(\tilde{C}_{\text{inclusive}}(\Delta\varphi) - (1 - f_{\text{prompt}})\tilde{C}_{f} \right)$$

Feed-Down subtraction

gFcConservative

 $\left(\frac{\mathrm{MC templ}}{\mathrm{feed}-\mathrm{down}} (\Delta \varphi) \right)$

Correction for b->D topological bias : MC Closure test

- **Kinematic level** : only acceptance cuts were applied on the D mesons and the associated particles •
- **Reconstructed level**: the analysis was performed as if it were executed on data, applying the event selection, lacksquarefollowed by all other corrections.

 $b \rightarrow \Lambda_c$ bias induced by topological variables - b-origin correlation pairs at the centre of the NS region

 \rightarrow More prominent at low-p_T(Λ_c); \rightarrow Larger effect with increasing p_T(assoc);

Correction formula:

$$F_{\text{orr}} = C \left(\Delta \varphi \right)_{\text{raw}} \cdot \left[\frac{\mathbf{c} \to \mathbf{D}|_{\text{amplit}}}{(\mathbf{B} + \mathbf{c}) \to \mathbf{D}|_{\text{amplit}}} \cdot f_{\text{prompt}} + \frac{\mathbf{B} \to \mathbf{D}|_{\text{amplit}}}{(\mathbf{B} + \mathbf{c}) \to \mathbf{D}|_{\text{amplit}}} \cdot \left(1 - f_{\text{prompt}} \right) \cdot \frac{1}{\mathbf{modu}} \right]$$

modul => The excess at the reconstructed level for the b-origin correlated pairs (dark green case), evaluated bin-by-bin for the NS peak region

Fitting : Calculation of Physical observables

Fit function :

$$f(\Delta arphi) = a \, + \, rac{Y_{
m NS} imes eta}{2 lpha \, \Gamma(1/eta)} imes e^{- \left(rac{\Delta arphi}{lpha}
ight)^eta} + \, rac{Y_{
m AS}}{\sqrt{2 \pi} \sigma_{
m AS}} imes e^{-rac{(\Delta arphi - \pi)^2}{2 \sigma_{
m AS}^2}}$$

Characterization of the jet shape and its composition:

- Near Side (NS): fragmentation of the tagged charm quark;
- Away Side (AS): fragmentation of the other charm quark;
- Transverse Region: sensitivity to underlying event

Compared with the results from D-h correlation analysis EPJC 82 (2022) 335

From the comparison:

- \rightarrow discrepancy in the low- $p_T(\Lambda_c^+)$ region for low-momentum associated particles
- \rightarrow good agreement between the $\Delta \varphi$ distribution in other kinematic ranges

Results : Near-side peak observables

Compared with the results from D-h correlation analysis EPJC 82 (2022) 335

From D-h correlations, increasing p_{T}^{HF} :

→ More energetic parton \rightarrow increasing yields

→ Larger heavy-quark boost \rightarrow more collimated shower \rightarrow sharpening of the peak

Higher NS yields in Λ_c^+ -h than D-h at low- p_T :

- different energy of the charm quark as a consequence of a softer Λ_{c^+} fragmentation
- decay of higher mass charm states

Results : Away-side peak observables

Compared with the results from D-h correlation analysis EPJC 82 (2022) 335

Enhancement also in the AS region:

 \rightarrow possibly justified by a softer Λ_{c}^{+} fragmentation

Results : comparison with MC generators

Results : comparison with MC generators

Near Side

• Increasing Yields and flat widths vs $p_T(\Lambda_c)$

 \rightarrow higher particle multiplicity in the jet

cone including color reconnection

• Large discrepancies in low- $p_T(\Lambda_c)$ yields

- Increasing Yields and decreasing widths vs $p_T(\Lambda_c)$
- Large discrepancies in low- $p_T(\Lambda_c)$ yields
 - \rightarrow both p_Tassoc sub-ranges are underestimated by models

Paper proposal placed : https://indico.cern.ch/event/1326692/ **Analysis note : https://alice-notes.web.cern.ch/node/1349**

What is missing:

Monte Carlo models:

- JetScape + modified fragmentation: some iterations needed with the authors
- Catania: will be included if their timeline is compatible, no news for the moment

Ongoing:

PYTHIA8: adding decay of higher charm states to quantify possible impact on correlations

Thank you

Data periods :

2016: LHC16d,e,g,h,j,k,l,o,p 2017: LHC17e,f,g,h,i,j,k,l,m,o,r 2018: LHC18b,d,e,f,g,h,i,k,l,m,n,o,p

Total number of selected events (from AliNormalizationCounter): ~ 1.70B

MonteCarlo productions:

HF enriched: ML: LHC20I1a, LHC20I1b, LHC20I1c; Eff.Corrections: LHC20f4a, LHC20f4b, LHC20f4c;

General-purpose:

2016: LHC17f6, LHC17f9, LHC17d17, LHC17f5, LHC17e5, LHC18f1, LHC18d8, LHC18d16, LHC18d18; 2017: LHC17h1, LHC17h3, LHC18c12, LHC17k4, LHC17h11, LHC18c13, LHC18a8, LHC17l5, LHC18a9, LHC18a1; 2018: LHC18g4, LHC18g5, LHC18g6, LHC18h2, LHC18h4, LHC18j1, LHC18j4, LHC18k1, LHC18k2, LHC18k3.

Reconstruction of \Lambda_c baryons

Model training : a supervised machine learning, as XGBOOST is, uses algorithms to train a model to find patterns in a dataset with labels and features and then uses the trained model to predict the labels by evaluating the new dataset feature two labelled dataset are built, respectively for the training of the models and for its performance evaluation by comparison with the truth labels. Two class of candidates are considered: prompt Ac, extracted from an HF-enriched MC production and combinatorial background candidates, selected from the invariant mass distribution sidebands of real data after having applied of the aforementioned preselections

Choice of training variable : The topological variables used to train the models are those usually used for the reconstruction of charmed hadrons without ML approach

After the training, the model is applied to both training and test datasets in order to extract the ML score distributions and verify the level of agreement between the two samples. In binary classification cases, one score is provided by the model, representing the probability for a candidate to be signal or background. The closer the score is to 1, the higher the probability for the candidate to be a true Λc baryon rather than a combinatorial triplet of uncorrelated charged tracks.

ML Working point : The choice of the ML output scores to be applied for candidate selection on data was performed by estimating the expected significance $(S/\sqrt{S} + B)$, signal-over-background ratio (S/B)

Removal of secondary particle contamination

ratio of Δφ distribution of primary track accepted over all tracks distribution is moving by three points and this distribution is multiplied to the data $\Delta \phi$ correlation distributions.

hRatioReflMovMean

Soft Pion removal

→ Correction for π coming from $\Sigma_c^{0,++}(2455) \rightarrow \Lambda_c^+ \pi^+$

Monte Carlo based approach:

- $\rightarrow \Sigma_c^{0,++} \rightarrow \Lambda_c^+ \pi^+$ decay kinematics simulation
- \rightarrow Extraction and correction of $\Delta \varphi_{MC}(\Lambda_c^+ \pi^{\mp})$
 - $\rightarrow p_{T}(\Lambda_{c^{+}} \leftarrow \Sigma_{c^{0,++}})$ rescaled to measurements;
 - \rightarrow Eff_{π}/Eff_{track} reweighting
- \rightarrow Product of the per-trigger-normalized

 $\Delta \varphi_{MC}^{\Lambda c-\pi}$ with

The corrected $\Delta \varphi$ ($\Lambda_c^+ - \pi^{\mp}$) is then subtracted from the fully corrected azimuthal correlation distribution

Systematics on \Delta \varphi shape

Those above are $\Delta \phi$ -correlated (act as scale factor on the corr. distribution).

In addition, Δφ-uncorrelated uncertainties from (max effect, under the peaks, 3-4%)

Sources	$pp(\Lambda_c)$								
	$p_{\rm T}(\rm assoc) > 0,3$		$0,3 < p_{\rm T}(assoc) < 1$			$p_{\rm T}(\rm assoc) > 1$			
p _T ranges	3-5	5-8	8-16	3-5	5-8	8-16	3-5	5-8	8-16
Λ_{c} -cut stability	2	2	2	2	2	2	2	2	2
Bkg corr. shape	1	0.5	1	1	0.5	1	2	1	1
Yield extraction	2	1	1	2	1	1	2	2	1
Track Efficiency	4	4	4	4	4	4	4	4	4
Purity	2	1	2	2	2	2	1	2	2

In addition, $\Delta \phi$ -uncorrelated uncertainties from feed-down subtraction, b $\rightarrow \Lambda_c^+$ bias and soft- π ($\Delta \phi \sim 0$)