Study of charmonium at forward rapidity and Λ_b at midrapidity in heavy-ion collisions using ALICE

Dr. Biswarup Paul Ramanujan fellow Variable Energy Cyclotron Centre Kolkata, India

ALICE-STAR India Collaboration Meeting University of Jammu 21st - 24th November 2023

Quarkonium in heavy-ion collisions

Quarkonium suppression: Quarkonium states are expected to be suppressed in a hot medium by color screening and dynamical dissociation

T. Matsui and H. Satz, PLB 178 (1986) 416 A Rothkopf, Phys. Rept. 858 (2020) 1-117

T > T_{diss} State melt

Quarkonium in heavy-ion collisions

Quarkonium suppression: Quarkonium states are expected to be suppressed in a hot medium by color screening and dynamical dissociation

T. Matsui and H. Satz, PLB 178 (1986) 416

A Rothkopf, Phys. Rept. 858 (2020) 1-117

□ Sequential melting: Differences in the binding energies lead to a sequential melting of quarkonium states with increasing temperature of the quark-gluon plasma (QGP)

T < T_{diss} State survived T > T_{diss} State melt

State	Mass [GeV]	$\Delta E [GeV]$	$r_0 [\mathrm{fm}]$
$J/\psi(1S)$	3.096	0.64	0.50
$\chi_{ m c}(1P)$	3.530	0.20	0.72
$\psi(2S)$	3.686	0.05	0.90
$\Upsilon(1S)$	9.460	1.10	0.28
$\chi_{ m b}(1P)$	9.990	0.67	0.44
$\Upsilon(2S)$	10.023	0.54	0.56
$\chi_{ m b}(2P)$	10.260	0.31	0.68
$\Upsilon(3S)$	10.355	0.20	0.78

Quarkonium in heavy-ion collisions

Quarkonium suppression: Quarkonium states are expected to be suppressed in a hot medium by color screening and dynamical dissociation

T. Matsui and H. Satz, PLB 178 (1986) 416

A Rothkopf, Phys. Rept. 858 (2020) 1-117

□ Sequential melting: Differences in the binding energies lead to a sequential melting of quarkonium states with increasing temperature of the quark-gluon plasma (QGP)

T < T_{diss} State survived

State	Mass [GeV]	$\Delta E [GeV]$	$r_0 [\mathrm{fm}]$
$J/\psi(1S)$	3.096	0.64	0.50
$\chi_{ m c}(1P)$	3.530	0.20	0.72
$\psi(2S)$	3.686	0.05	0.90
$\Upsilon(1S)$	9.460	1.10	0.28
$\chi_{ m b}(1P)$	9.990	0.67	0.44
$\Upsilon(2S)$	10.023	0.54	0.56
$\chi_{ m b}(2P)$	10.260	0.31	0.68
$\Upsilon(3S)$	10.355	0.20	0.78

Quarkonium recombination: Increase of cc̄ production cross section at LHC energies → Enhanced quarkonium production via recombination at the phase boundary or during the QGP phase

P. Braun-Muzinger, J. Stachel, PLB 490 (2000) 196R. Thews et al, Phys. Rev. C 63 (2001) 054905

A Large Ion Collider Experiment

- → Inclusive quarkonium measurements possible down to zero $p_{\rm T}$ in both rapidity regions
- → Prompt and non-prompt J/ ψ can be separated down to very low $p_{\rm T}$ at midrapidity

Forward muon spectrometer: J/ ψ , $\psi(2S)$, $\Upsilon(nS) \rightarrow \mu^+\mu^-$ (2.5 < y < 4)

Muons identified and tracked in the muon spectrometer

Central barrel: $J/\psi \rightarrow e^+e^- (|y| < 0.9)$

Electrons reconstructed using ITS and TPC Particle identification: TPC dE/dx

V0: (V0A: $2.8 < \eta < 5.1$ & V0C: $-3.7 < \eta < -1.7$) Trigger, background rejection, centrality measurements in A-A collisions and event plane determination Nuclear modification factor (R_{AA}) of J/ ψ in Pb-Pb collisions

• Measuring quarkonium production in A-A relative to production in pp collisions:

$$R_{\rm AA}(p_{\rm T}) = \frac{dN_{\rm AA}/dp_{\rm T}}{\langle T_{\rm AA} \rangle \times d\sigma_{\rm pp}/dp_{\rm T}}$$

→ R_{AA} >1: Enhancement → R_{AA} <1: Suppression

TAMU: X. Du and R. Rapp, Nucl. Phys. A. 943 (2015) 147 SHMc: A. Andronic et. al., Nature 561 no. 7723 (2018) 321

- Rise of inclusive $J/\psi R_{AA}$ at low p_T , stronger effect at midrapidity in central events \rightarrow strong signature of recombination
- Models that include regeneration either at the phase boundary (SHM) or during the medium evolution (TAMU) are both in agreement with data at low $p_{\rm T}$
 - \rightarrow not possible to disentangle between the two different regeneration scenarios using J/ ψ only

ALICE, PLB 766 (2017) 212, PC: J. Castillo, R. Arnaldi, B. Audurier, V. Feuillard, B. Paul, E. Scomparin and M. Tarhini ALICE, JHEP 02 (2020) 041, PC: B. Audurier, B. Paul, E. Scomparin and M. Tarhini

$p_{\rm T}$ dependence of $\psi(2S)$ production in Pb-Pb collisions

- $\psi(2S)$ more suppressed than J/ ψ over the full p_{T} range
- Stronger suppression at high- p_{T} and increasing trend of R_{AA} towards low- p_{T} for both charmonium states \rightarrow hint of regeneration
- Good agreement with CMS at high $p_{\rm T}$, although the rapidity range is different
- TAMU model reproduces the $p_{\rm T}$ dependence of $R_{\rm AA}$ for both J/ ψ and ψ (2S)

ALICE, arXiv:2210.08893 (accepted in PRL), PC: R. Arnaldi, K. Garg, M. Guilbaud, H. Hushnud, B. Paul and E. Scomparin

Centrality dependence of $\psi(2S)$ production in Pb-Pb collisions

ALICE, $2.5 < y_{cms} < 4$, $p_{T} < 12 \text{ GeV}/c$

• Pb–Pb, $\sqrt{s_{NN}} = 5.02 \text{ TeV}$

Pb-Pb, $\sqrt{s_{NN}} = 17.3 \text{ GeV}$

SHMc, √*S*_{NN} = 5.02 TeV

ALICE (pp ref: \sqrt{s} = 5.02 TeV, arXiv:2109.15240) NA50 (pp ref: $\sqrt{s} = 27$ GeV, from EPJC48 329(2006)

150

200

250

300

350

400 $\langle N_{\rm part'}$

- TAMU, $\sqrt{s_{\text{NN}}} = 5.02 \text{ TeV}$

100

NA50, 0 < y_{lab} < 1 (EPJ C49(2007) 559)

BB

0.02

0.0

0.005

 $[\sigma_{\psi(2S)}/\sigma_{J/\psi}]_{pbpb}/[\sigma]$

ALI-PUB-528400

0.8 0.6

0.4 0.2

50

й 6.015

• Flat centrality dependence within uncertainty for both $\psi(2S) R_{AA}$ and $\psi(2S)$ -to-J/ ψ (double) ratio at the LHC

• TAMU model reproduces the centrality dependence of the $\psi(2S)$ and $J/\psi R_{AA}$, as well as the $\psi(2S)$ -to- J/ψ one

ALICE, arXiv:2210.08893 (accepted in PRL), PC: R. Arnaldi, K. Garg, M. Guilbaud, H. Hushnud, B. Paul and E. Scomparin

 $Λ_b$ analysis in Pb-Pb collisions at $√s_{NN} = 5.5$ TeV (simulation) using ITS2 and ITS3

ITS3: Upgraded Inner Tracking System after Long Shutdown 3

- \rightarrow ultra-thin Si CMOS (20 µm thick) \rightarrow circuitry pushed to periphery
- \rightarrow can be curved
- \rightarrow sensors of up to 10 \times 26 cm² size which can be bent to half-cylindrical shapes of 18, 24 and 30 mm bending radii for layer 0, 1 and 2 respectively

1D stitched sensor (z direction)

Estimation of expected $\Lambda_{\rm h}$ signal and background

 $N_{\rm Bkg} = (N_{\rm Bkg}^{\rm MC}/N_{\rm ev}^{\rm MC}) \times N_{\rm ev}^{\rm exp}$

- $f(b \to B) = 0.407$
- $R^{\rm B}_{\Lambda\Lambda}$ = Nuclear modification factor of nonstrange B meson
- T_{AA} (0-10%) = 23.07 mb⁻¹
- $N^{\exp}_{ev}(0-10\%) = 7.7 \times 10^9$
- $N^{\text{MC}} = 2105500 \text{ (ITS3)}$ and 705162 (ITS2)
- BR = BR($\Lambda_{h} \rightarrow \Lambda_{a}\pi$) x BR($\Lambda_{a} \rightarrow pK\pi$)
 - $=4.9 \times 10^{-3} \times 6.23 \times 10^{-2}$

ALI-SIMUL-348369

• Caveat: MC and R^{B}_{AA} are in 0-10% centrality but Λ_{b}/B is in 0-20% centrality

MC sample and analysis procedure

- New MC Production LHC19h1b2 (1,2,3,4): 2M Pb-Pb events at 5.5 TeV
- Lego train number: 632 (https://alimonitor.cern.ch/trains/train.jsp?train_id=131)

Topological Variables	ITS2 (70% Signal Survival)	ITS3 (70% Signal Survival)
cos_p >	0.9974	0.9994
ctau >	0.019	0.019
norm_dl_xy >	3.925	8.325
norm_dl_xy_Lc >	6.7625	14.1575
max_norm_d0d0exp_Lc >	3.175	6.275
d_len >	0.022	0.022
d_len_Lc >	0.035	0.037
imp_par_Lc >	0.00485	0.00495
imp_par_pi >	0.00925	0.00965

- Procedure:
 - Variables that allow to reject more efficiently background were considered
 - Each variable was tuned in order to keep a given fraction of signal (e.g. 70%, 80%, 90%)

Signal and background extraction (ITS3)

- Signal was fitted with a double Crystal ball function (CB2)
- Background was fitted with a exponential function

Acceptance x efficiency of $\Lambda_{\rm b}$

S/B and Significance (S/ $\sqrt{(S+B)}$) of $\Lambda_{\rm b}$

- S/B and Significance of $\Lambda_{\rm b}$ in 0-10% in $|y|{<}0.8$
- With ITS3 it will be possible to measure $\Lambda_{\rm b}$ down to $p_{\rm T} = 1 \text{ GeV}/c$

ALICE-PUBLIC-2023-002, PC: A. Rossi, A. Philipp Kalweit, B. Paul, M. Buckland, J. Ditzel, B. Donigus, M. Faggin, P. Ganoti, F. Grosa, J. Norman, S. Politano and L Vermunt

ALICE

Conclusions

- → The $\psi(2S)$ is more suppressed than the J/ ψ in entire p_T and centrality range
- → Comparison of J/ ψ and ψ (2S) R_{AA} with transport model shows a fair agreement within uncertainties
- → Transport model, which includes recombination of charm quarks in the QGP phase, reproduces the $\psi(2S)$ -to-J/ ψ ratio better than SHMc model for central events
- → The ITS3 will allow for a measurement of $\Lambda_{\rm b}$ down to $p_{\rm T} = 1$ GeV/*c*

Prospects for Run 3/4

- → Significant increase of statistical precision expected with $L_{int} \sim 10 \text{ nb}^{-1}$, thanks to continuous readout
- → The Muon Forward Tracker (MFT) will allow to separate the prompt charmonium from the contribution originating from beauty hadron decays at forward rapidity

List of journal publications as first/principal author

- 1. " $\psi(2S)$ production in Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV", Roberta Arnaldi, Kunal Garg, Maxime Guilbaud, Hushnud Hushnud, Biswarup Paul and Enrico Scomparin (ALICE Collaboration), [arXiv:2210.08893[nucl-ex]]. Accepted in PRL
- 2. "Centrality dependence of J/ ψ and ψ (2S) production and nuclear modification in p-Pb collisions at $\sqrt{s_{\rm NN}} = 8.16$ TeV", Javier Castillo, Jhuma Ghosh, Luca Micheletti and Biswarup Paul (ALICE Collaboration), JHEP **02**, 002 (2021),

Roberta Arnaldi, Sukalyan Chattopadhyay <u>Biswarup Paul</u> and Wadut Shaikh (ALICE Collaboration), PLB **806**, 135486 (2020),

- 4. "Studies of J/ψ production at forward rapidity in Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV", Mohamad Tarhini, Benjamin Audurier and Enrico Scomparin and Biswarup Paul (ALICE Collaboration), JHEP **02**, 041 (2020),
- 5. "J/ ψ suppression at forward rapidity in Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV", Javier Castillo, Roberta Arnaldi, Benjamin Audurier, Victor Feuillard, Biswarup Paul, Enrico Scomparin and Mohamad Tarhini (ALICE Collaboration), PLB **766**, 212-224 (2017),
- 6. "Suppression of $\psi(2S)$ production in p-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV", Roberta Arnaldi, Marco Leoncino, Biswarup Paul and Enrico Scomparin (ALICE Collaboration), JHEP **12**, 073 (2014),
- 7. "Measurement of quarkonium production at forward rapidity in pp collisions at $\sqrt{s} = 7$ TeV", Xavier Lopez, Livio Bianchi, Martino Gagliardi, Biswarup Paul, Hugo Pereira Da Costa and Philippe Rosnet (ALICE Collaboration), Eur. Phys. J. C **74**, 2974 (2014),

Theory paper

 "Systematic study of charmonium production in pp collisions at LHC energies", Biswarup Paul, Mahatsab Mandal, Pradip Roy and Sukalyan Chattopadhyay, J. Phys. G: Nucl. Part. Phys. 42 065101 (2015),

ALICE Public Notes

- "Upgrade of the Inner Tracking System during LS3: study of physics performance" Andrea Rossi, Alexander Philipp Kalweit, <u>Biswarup Paul</u>, Matthew Daniel Buckland, Janik Ditzel, Benjamin Donigus, Mattia Faggin, Paraskevi Ganoti, Fabrizio Grosa, Jaime Norman, Stefano Politano and Lucas Anne Vermunt PUB-1327, ALICE-PUBLIC-2023-002
- 2. "Reference pp cross sections for J/ ψ and ψ (2S) production studies in p-Pb collisions at $\sqrt{s_{\rm NN}} = 8.16$ TeV" Javier Castillo, Jhuma Ghosh, Luca Micheletti and Biswarup Paul

PUB-1089, ALICE-PUBLIC-2020-007

- 3. "Preliminary Physics Summary: Inclusive Υ production in p-Pb collisions at $\sqrt{s_{\rm NN}} = 8.16$ TeV" Roberta Arnaldi, Biswarup Paul and Wadut Shaikh PUB-820, ALICE-PUBLIC-2018-008
- 4. "Preliminary Physics Summary: Centrality dependence of J/ψ production in p-Pb collisions at $\sqrt{s_{\rm NN}} = 8.16$ TeV" Roberts Arreldi, Bisuarun Baul and Chiere Oppediane

Roberta Arnaldi, <u>Biswarup Paul</u> and Chiara Oppedisano PUB-663, ALICE-PUBLIC-2017-007

5. "Preliminary Physics Summary: Inclusive J/ ψ production at forward rapidity in p-Pb collisions at $\sqrt{s_{\rm NN}} = 8.16$ TeV", Roberta Arnaldi, Biswarup Paul and Enrico Scomparin PUB-599, ALICE-PUBLIC-2017-001

Review articles

- "Prospects for quarkonium studies at the high-luminosity LHC", E. Chapon, <u>B. Paul</u> et al. Progress in Particle and Nuclear Physics **122**, 10390 (2022),
- "INFN What Next: Ultra-relativistic Heavy-Ion Collisions", A. Dainese, <u>B. Paul</u> et al. Frascati Phys. Ser. **62** (2016),

ALICE Analysis Notes

- 1. " ψ (2S) production in Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV" Roberta Arnaldi, Biswarup Paul, Hushnud Hushnud, Kunal Garg ANA-1216
- 2. "Multi-differential studies of the J/ ψ production in p-Pb collisions at $\sqrt{s_{\rm NN}}=$ 8.16 TeV" $\frac{\rm Biswarup\ Paul}{\rm ANA-751}$
- 3. "Centrality dependence of inclusive J/ ψ production in p-Pb collisions at $\sqrt{s_{\rm NN}}=$ 8.16 TeV" $\frac{\rm Biswarup\ Paul}{\rm ANA-654}$
- 4. "Centrality dependence of inclusive $\Upsilon(1S)$ production in p-Pb collisions at $\sqrt{s_{\rm NN}} = 8.16$ TeV" Biswarup Paul, Wadut Shaikh, Indranil Das and Sukalyan Chattopadhyay ANA-753

- 5. "Inclusive Υ production in p-Pb collisions at $\sqrt{s_{\rm NN}}=$ 8.16 TeV" Wadut Shaikh, Biswarup Paul, Indranil Das and Sukalyan Chattopadhyay ANA-714
- 6. "Inclusive J/ ψ production in p-Pb collisions at $\sqrt{s_{\rm NN}} = 8.16$ TeV" R. Arnaldi. L. Micheletti, <u>B. Paul</u> and E. Scomparin ANA-591
- 7. "Multi-differential studies of the J/ ψ production in Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV" B. Audurier, <u>B. Paul</u> and M. Tarhini ANA-581
- 8. "J/ ψ production in Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV" R. Arnaldi, B. Audurier, J. Castillo, V. Feuillard, <u>B. Paul</u>, P. Pillot, E. Scomparin and M. Tarhini ANA-486
- 9. "Measurement of inclusive charmonium production cross section at forward rapidity in pp collisions at $\sqrt{s} = 8$ TeV"

Das Indranil, Lardeux Antoine Xavier, <u>Paul Biswarup</u> and Pillot Phillipe ANA-395

- 10. "Measurement of an excess in the yield of J/ψ at very low p_T in Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV" G. Martinez, L. Massacrier, G. Contreras, <u>B. Paul</u>, P. Pillot, C. Suire and L. Valencia Analysis note
- 11. " p_T dependence of the inclusive $\psi(2S)$ production in pA collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV" Roberta Arnaldi, Marco Leoncino, Biswarup Paul and Enrico Scomparin ANA-268, CERN-PH-EP-2014-092
- 12. " ψ (2S) production in pA collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV"

Laurent Aphecetche, Roberta Arnaldi, Cynthia Hadjidakis, Igor Lakomov, Marco Leoncino, Biswarup Paul and Enrico Scomparin ANA-243, CERN-PH-EP-2014-092

13. "Inclusive J/ ψ and ψ (2S) production cross sections in pp collisions at $\sqrt{s} = 7$ TeV" <u>Biswarup Paul</u>, Roberta Arnaldi, Livio Bianchi, Sukalyan Chattopadhyay, Martino Gagliardi, Enrico Scomparin, Diego Stocco and Lizardo Valencia Palomo ANA-182, CERN-PH-EP-2014-042

J/ ψ in Pb-Pb collisions at $\sqrt{s_{\text{NN}}} = 5.36$ TeV (Run 3)

• Dataset: LHC23zx, LHC23zy, LHC23zz, LHC23zzb

Muon cuts:

- $-4 < \eta_{\mu} < -2.5$
- $17.6 < R_{abs} < 89.5 \text{ cm}$
- pDCA cut
- $\chi^2_{\text{MCH-MID}} > 0$
- Muon $p_{\rm T} > 0 {\rm ~GeV/c}$
- 2.5 < y < 4

Signal extraction

- Physics Selection
- Trigger selection: CMUL7-B-NOPF-MUFAST
- Centrality estimators: V0M
- Standard cuts applied:
 - \rightarrow 2 muon matching the trigger
 - → $17.6 < R_{abs} < 89.5$ cm
 - \rightarrow 4 < η_{μ} < 2.5

→
$$2.5 < y_{\mu\mu} < 4$$

- \rightarrow pDCA cut
- $\rightarrow 0 < p_{\rm T} < 12 \, {\rm GeV}/c$
- J/ ψ tail parameters have been used for $\psi(2S)$
- Mass position and width of $\psi(2S)$ are scaled to J/ψ mass position (PDG) and width (ratio from MC)
- Signal functions: CB2 functions
- Background functions: Variable Width Gaussian (5 parameters)

Topological variables (ITS3) [70% signal survival]

Cumulative histogram: A histogram in which the vertical axis gives not just the counts for a single bin, but rather gives the counts for that bin plus all bins for smaller values of the response variable.

Energy and system size dependence of J/ ψ and ψ (2S) R_{AA}

- No significant energy dependence of $J/\psi R_{AA}$ for collision energies up to 200 GeV \rightarrow Interplay between dissociation, regeneration and cold nuclear matter effects (X. Zhao, R. Rapp, PRC 82 (2010) 064905)
- Centrality dependence trend of $\psi(2S)/J/\psi$ at RHIC seems to be more similar to that at SPS than at LHC

Biswarup Paul

4th HF meet 2023

Glauber Model

- The probability per unit transverse area of a given nucleon being located in the target flux tube is $\hat{T}_A(\mathbf{s}) = \int \hat{\rho}_A(\mathbf{s}, z_A) dz_A$
- The thickness function or nuclear overlap function:

$$\hat{T}_{AB}(\mathbf{b}) = \int \hat{T}_{A}(\mathbf{s}) \, \hat{T}_{B}(\mathbf{s} - \mathbf{b}) \, d^{2}s$$

- The effective overlap area for which a specific nucleon in A can interact with a given nucleon in B. The probability of an interaction occurring is then $\hat{T}(\mathbf{b}) \sigma_{\text{inel}}^{\text{NN}}$
- $\sigma_{\text{inel}}^{\text{NN}}$ is the inelastic nucleon-nucleon cross section.

- The probability of having *n* interactions between nuclei A (with A nucleons) and B (with B nucleons) is given as a binomial distribution: $P(n, \mathbf{b}) = {\binom{AB}{n}} \left[\hat{T}_{AB}(\mathbf{b}) \sigma_{\text{inel}}^{\text{NN}} \right]^n \left[1 - \hat{T}_{AB}(\mathbf{b}) \sigma_{\text{inel}}^{\text{NN}} \right]_{AB}^{AB-n}$
- The total number of nucleon-nucleon collisions is: $N_{\text{coll}}(b) = \sum_{n=1}^{AB} nP(n,b) = AB\hat{T}_{AB}(b)\sigma_{\text{inel}}^{NN}$

• The number of participants at impact parameter *b* is given by: $N_{\text{part}}(\mathbf{b}) = A \int \hat{T}_{A}(\mathbf{s}) \left\{ 1 - \left[1 - \hat{T}_{B}(\mathbf{s} - \mathbf{b}) \sigma_{\text{inel}}^{\text{NN}} \right]^{B} \right\} d^{2}s + B \int \hat{T}_{B}(\mathbf{s} - \mathbf{b}) \left\{ 1 - \left[1 - \hat{T}_{A}(\mathbf{s}) \sigma_{\text{inel}}^{\text{NN}} \right]^{A} \right\} d^{2}s$

Heavy-ion collision

M. Kleimant et. al., DOI 10.1007/978-3-642-02286-9_2

• Thermal freeze-out

Elastic collisions stopped, kinetic distribution of produced particles get fixed.

• Chemical freeze-out

Hadronization. Inelastic collisions stopped, abundances and particle ratios become fixed.

• QGP

Thermal equilibrium at $\tau = \tau_0 \sim 1 \text{ fm/c} \approx 3 \times 10^{-24} \text{ s}$ Energy density ~ 10 GeV/fm³ Dimension ~ 300 fm³ T~ 550 MeV $\approx 5.5 \times 10^{12} \text{ K}$ lifetime ~10 fm/c $\approx 3 \times 10^{-23} \text{ s}$ at LHC.

• Pre-equilibrium

Hard processes, creation of heavy $Q\bar{Q}$ pairs. Formation time of charm quark ~ 0.08 fm/c $\approx 3 \times 10^{-25}$ s.

ITS2: upgraded Inner Tracking System (ITS) of ALICE

ITS3

1D stitched sensor (z direction)

$$\rightarrow$$
 ultra-thin Si CMOS (20 µm thick

$$\rightarrow$$
 circulary pushed to peripher

 \rightarrow can be curved

1.1

Complementary Metal-Oxide-Semiconductor (CMOS)

PMOS Transistor

- P-channel MOS transistor
- P-type source and drain, N-type substrate

NMOS Transistor

- N-channel MOS transistor
- N-type source and drain, P-type substrate

CMOS Technology

- Complementary MOS technology
- Both NMOS and PMOS transistors

CMOS Technology: Inverter

• Input 1: PMOS off, NMOS on, output = 0

CMOS Technology: Inverter

Input 0: PMOS on, NMOS off, output = 1

Inner Tracking System (ITS) of ALICE

	ITS1 (SPD = 2 inner)	ITS2 (3 inner)	ITS3 (3 inner)
Beam pipe inner radius/thickness	3.0 cm/0.09 cm	1.82/0.08 cm	1.6/0.05 cm
First-layer radius	3.9 cm	2.3 cm	1.8 cm
X/X° per layer	1.1 %	0.35 %	0.05%
η coverage	> 1.4	> 2.0	> 2.0
Number of Sensors per layer	80+160	108+144+180	2 to 4
Technology	Hybrid pixels	CMOS	CMOS
Trigger ?	yes	no	Not foreseen
Pixel size rφ x z	≈ 50x425 µm²	$\approx 30 \mathrm{x} 30 \mathrm{\mu} \mathrm{m}^2$	$\approx 10 x 10 \ \mu m^2$
Intrinsic resolution rφ / z	12 μm / 100 μm	5 μm / 5 μm	3 μm / 3 μm
Readout frequency Pb-Pb	< 3 kHz > 300 ns (SPD)	< 50-100 kHz > 20-10 μs	$\approx \le 200 \text{ kHz}$ $\approx \ge 5 \mu \text{s}$
Power dissipation in the pixel matrix	≈ 550-736 mW/cm² i.e. liquid cooled	~40 mW/cm², i.e. liquid cooled	~7 mW/cm², i.e. air flow

Kinematic variables

For a particle with 4-momentum $p^{\mu} = p^{\mu}(E, p_x, p_y, p_z)$ the kinematic variables are defined as:

- Transverse momentum: $p_{\rm T} = \sqrt{p_x^2 + p_y^2}$
- Rapidity: $y = \frac{1}{2} \ln \left(\frac{E + p_z}{E p_z} \right)$
- Pseudorapidity: $\eta = -\ln\left[\tan\left(\frac{\theta}{2}\right)\right] = \frac{1}{2}\ln\left(\frac{|\vec{p}| + p_z}{|\vec{p}| p_z}\right)$

For a particle with the momentum very large compared to its rest mass $y\approx\eta$

• Center-of-mass energy: $\sqrt{s_{\rm NN}} \simeq 2E \sqrt{\frac{Z_1 Z_2}{A_1 A_2}}$

Example: for Pb-Pb collisions, $Z_1 = Z_2 = 82$, $A_1 = A_2 = 208$, and the energy of the proton beam E = 6.37 TeV, therefore $\sqrt{s_{NN}} = 5.02$ TeV. • Centrality estimation:

Estimated based on a Glauber model fit of the V0M amplitude.

PRL. 116, 222302 (2016)