Non-prompt D⁺ meson production in pp collisions at $\sqrt{s} = 13$ TeV

Binti Sharma Thesis supervisor: Prof. Sanjeev Singh Sambyal, Renu Bala Department of Physics University of Jammu

ALICE-STAR-India collaboration meeting

- Physics motivation
- Data samples and analysis strategy
- Raw yields extraction
- Selection efficiency estimation
- Non-prompt fraction estimation
- Overview of systematics
- Production cross section
- Conclusions

Physics motivation

Non-prompt D⁺ mesons

- Heavy Quarks(c, b) are produced in initial hard-scattering processes on a shorter time-scale than the QGP formation.
- They experience full evolution of the system, propagating and interacting with the medium constituents via elastic and inelastic scatterings.
- Study the beauty production in pp collisions
 - Non-prompt D⁺ mesons come from B⁰ and B⁺
 - ➡ test pQCD theory
 - measure total b-bbar cross section in pp at 13 TeV
 - measure beauty-quark fragmentation-fraction to strange over non-strange

Samples:

- Data sample: pp collisions @ 13 TeV (2016, 2017, 2018); N_{ev} for norm = 1.836e+09
- MC sample: LHC20f4 for efficiencies, LHC20l1 for Machine Learing(ML) model training/testing

Analysis strategy:

- Decay Channel $D^+ \rightarrow K^- \pi^+ \pi^+$ (with B.R. = (9.38±0.16)%)
- In particular, some preselections (which include single-track, topological, and PID selections), based on displaced decay-vertex topologies, were applied to select the D⁺ candidates.
- Then the multi-class classification algorithm (<u>hipe4ml</u>) provided by XGBoost was used to separate the three contributions (prompt D⁺, non-prompt D⁺, and combinatorial background).
 - Raw yield extraction from fit to invariant-mass distribution
 - Selection efficiency from MC simulation
 - f_{FD} estimated via data driven method
 - production cross section

Topological variables	pT intervals(GeV/C)			
	[1,5]	[5,50]		
σ _{vertex} (μm)	<400	<600		
Decay length (µm)	>300	>300		
cosθ _p	>0.85	>0.75		
cosθ _p ^{xy}	>0.80	>0.70		

- pseudorapidity interval
 |η| < 0.8
- $p_{T} > 0.3 \text{ GeV/c in pp}$ collisions
- $\chi^2/ndf < 2$
- at least 50, out of a maximum of 159, crossed rows in the TPC.
- ratio of crossed rows over findable clusters in the TPC larger than 0.8

Optimisation of ML selection for $D^+(2 < p_T < 3 \text{ GeV}/c)$

- Choice of ML-based selections is performed by estimating expected quantities for several threshold values on the ML output scores (NP, Bkg)
 - signal from FONLL
 - efficiencies from MC and non-prompt fraction from theory-driven method (f^c)
 - background from sidebands (only fraction of data)

D ⁺ meson	p _T interval (GeV/ <i>c</i>)									
	[1,2]	[2,3]	[3.4]	[4,5]	[5,6]	[6,8]	[8,10]	[10,12]	[12,16]	[16,24]
probability to be background <	0.03	0.025	0.025	0.040	0.040	0.030	0.040	0.050	0.050	0.050
probability to be non-prompt >	0.80	0.86	0.86	0.82	0.80	0.80	0.82	0.82	0.76	0.70

Raw yields for non-prompt D⁺

Sigma = 0.015 ± 0.000

M(K.m.t) (GeV/c2)

Significance (3o) 8.3 ± 0.7

S (3o) 162 ± 18 B (3g) 221 # 8 S/B (3o) 0.7350

- Signif: [5.5, 10.9, 14.1, 18.3, 19.0, 19.2, 14.2, 9.9, 9.1, 8.3]
- Sigma fixed to prompt-enhanced results
- Good signal extraction up to 24 GeV/c

M(Kππ) (GeV/c²)

M(Kππ) (GeV/c²)

M(Kππ) (GeV/c²)

- Gauss + Expo in full p_{τ} range
- [24-50] not accessible

9

Efficiency times Acceptance

- Same strategy adopted for non-prompt D meson measurements @ 5 TeV (<u>arXiv:2102.13601</u>)
 - data driven method based on selection criteria variation (more details in <u>backup</u>)
- Higher sample purity in pp collisions at 13 TeV (~70%) wrt 5 TeV

Cross section vs. FONLL

$$\frac{\mathrm{d}N(\mathrm{D_{non-prompt}})}{\mathrm{d}p_{\mathrm{T}}} = \frac{f_{\mathrm{non-prompt}}(p_{\mathrm{T}}) \cdot N_{\mathrm{raw}}^{\mathrm{D}}(p_{\mathrm{T}})}{2 \cdot \Delta p_{\mathrm{T}} \cdot c_{\Delta y}(p_{\mathrm{T}}) \cdot (\mathrm{Acc} \times \epsilon)_{\mathrm{non-prompt}}(p_{\mathrm{T}}) \cdot \mathrm{BR} \cdot \mathcal{L}_{in}}$$

Comparison with:

- FONLL (B) + PYTHIA 8 (e⁺e⁻ FF) as done at 5 TeV
 - good agreement
 - ➡ similar to what observed @ <u>5.02</u> TeV
- TAMU predictions from Min He and Ralf Rapp., Which adopts the p_T -differential beauty-quark cross section from FONLL along with the same fragmentation functions employed in FONLL and a statistical hadronisation approach for f (b $\rightarrow h_h$).

Overview of systematic uncertainties

Summary of systematic uncertainties

D⁺ meson	p _T interval (GeV/ <i>c</i>)									
	[1,2]	[2,3]	[3,4]	[4,5]	[5,6]	[6,8]	[8,10]	[10,12]	[12,16]	[16,24]
Raw-yield extraction	5%	4%	4%	4%	4%	4%	4%	4%	5%	5%
ML selection efficiency	10%	6%	5%	4%	4%	4%	4%	4%	4%	4%
Non-prompt fraction	5%	3%	3%	3%	3%	3%	3%	3%	3%	3%
Tracking efficiency	6%	6%	6%	6%	7%	7%	7%	7%	8%	8%
PID efficiency	negl.	negl.	negl.	negl.	negl.	negl.	negl.	negl.	negl.	negl.
$MC p_T$ shape	7%	5%	3%	1%	negl.	negl.	negl.	negl.	2%	5%
Normalisation	1.6%									
Branching ratio	1.7%									

Taken from prompt D analyses

Measurement of non-prompt $D^{\scriptscriptstyle +}$ meson production in pp @ 13 TeV with ML multi-classification technique

- Non-prompt D⁺ meson production cross section measured
- Systematic uncertainty estimation completed

TO DO

- D⁺ meson systematic uncertainty on material budget to be updated for the paper
- Total b-bbar cross section in pp at 13 TeV
- Beauty-quark fragmentation fraction to strange over non-strange

AN: <u>https://alice-notes.web.cern.ch/node/1347</u>¹⁵

Measurement of non-prompt $D^{\scriptscriptstyle +}$ meson production in pp @ 13 TeV with ML multi-classification technique

- Non-prompt D⁺ meson production cross section measured
- Systematic uncertainty estimation completed

TO DO

- D⁺ meson systematic uncertainty on material budget to be updated for the paper
- Total b-bbar cross section in pp at 13 TeV
- Beauty-quark fragmentation fraction to strange over non-strange

THANK YOU

AN: <u>https://alice-notes.web.cern.ch/node/1347</u>¹⁶

Training variable distributions

- All variables employed in the training (invariant mass and transverse momentum excluded)
- Training samples of prompt D⁺ mesons and non-prompt D⁺ mesons from MC
- Training samples of bkg with data from SB (D⁺ meson)

- Signal extraction from 1 to 24 GeV/c
- Significance between 18 and 59

M(Kππ) (GeV/c²)

M(Kππ) (GeV/c²)

M(Kππ) (GeV/c²)

1.0 < p_<2.0 GeV/c

Non-prompt fraction estimation via data-driven method

Same strategy adopted for non-prompt D^+ meson measurements @ 5 TeV (arXiv:2102.13601)

I). *n* set of ML-based selections with different prompt and non-prompt D^+ mesons contributions

II). Each set is equivalent to an equation with 2 variables $(N_n,$ $\begin{cases} \epsilon_{prompt}^{1} \cdot N_{prompt} + \epsilon_{FD}^{1} \cdot N_{FD} = Y^{1} & N_{np} \\ \vdots \\ \epsilon_{prompt}^{n} \cdot N_{prompt} + \epsilon_{FD}^{n} \cdot N_{FD} = Y^{n} & ||| \end{pmatrix}.$ System of equations is overdetermined: approximated solution obtained by minimising a χ^2 $igg(egin{array}{ccc} \epsilon^{*}_{prompt} & \epsilon^{*}_{FD} \ dots & dots \ \epsilon^{n} & dots & \epsilon^{n}_{FD} \end{array} igg) imes igg(egin{array}{ccc} N_{
m p} \ N_{
m np} \end{array} igg) - igg(egin{array}{ccc} Y1 \ dots \ Y_{n} \end{pmatrix} = igg(egin{array}{ccc} \delta_{2} \ dots \ \delta_{n} \end{pmatrix} igg)$ $f_{FD}^{j} = \frac{\varepsilon_{FD}^{j} N_{FD}}{\varepsilon_{FD}^{j} N_{FD} + \varepsilon_{prompt}^{j} N_{prompt}}$ IV). From the approximated solution (N_{p}, N_{np}), the non-prompt fraction can be estimated

Non-prompt fraction estimation (D⁺, $2 < p_T < 3 \text{ GeV}/c$)

- Central cutset: $f_{np} \sim 70\%$ in full p_T
- With looser selection $\epsilon_{FD} \approx 5\epsilon_{prompt}$
- With tighter selection $\epsilon_{FD} \approx 70 \epsilon_{prompt}$

12 14

8 10

2

16 18 20

Estimation of systematic uncertainties

- Systematic source: (more details in <u>backup</u>)
 - Raw yield extraction: multi-trial approach
 - Selection efficiency: cut-variations on ML-output score
 - Non-prompt fraction estimation ($f_{non-prompt}$): data-driven method
 - MC p_T shape: repeat full analyses applying p_T weights from FONLL p_T shapes for generated signal in MC simulations
 - PID: inherited from prompt D⁺ meson analyses

(da/dp_) / (da/dp_)

cut se

out se

 Tracking: consider single-track systematic uncertainty and ITS-TPC matching efficiency using the D-meson decay kinematics

D⁺ *f*_{FD} estimation ([1-2], [2-3])

D⁺ f_{FD} estimation ([3-4], [4-5])

D⁺ *f*_{FD} estimation ([5-6], [6-8])

D⁺ f_{FD} estimation ([8-10], [10-12])

D⁺ f_{FD} estimation ([12-16], [16-24])

Systematic uncertainties: non-prompt fraction

Configuration	Meaning
Narrow	tightest (" <i>right</i> ") and loosest (" <i>left"</i>) cut sets are removed from the minimisation
Wide	tighter (" <i>right</i> ") and looser (" <i>left"</i>) cut sets are added in the minimisation
alt step	different step sizes are considered among the cut sets

- The systematic uncertainty on the non-prompt fraction is evaluated by varying the sets of cuts considered in the system minimisation
- Assigned uncertainty range from 3% to 5% for D⁺ and 2% to 10% for D⁺.

- Propagate single-track systematic uncertainty on ITS-TPC matching efficiency using decay kinematics of non-prompt D⁺.
 - tracking selection efficiency systematic for non-prompt
 D are taken from <u>DPG</u>
- Assigned uncertainty range from 6% to 8% for non-prompt D⁺

Systematic uncertainties: D⁺ raw-yield - $2 < p_T < 3 \text{ GeV}/c$

- 3 bkg functions (lin, pol2, expo)
- different upper/lower limits
- 5 different rebin
- mean: free
- sigma: fixed to prompt-en. ± unc
- Syst. unc. estimated as sum in quadrature of RMS and shift w.r.t. the trial distribution
 - Assigned uncertainty range from 4% to 5%

Systematic uncertainties: ML sel. eff. - D⁺, 2 < p_{T} < 3 GeV/c

- 12 different Bkg_score variations
- 20 different
 FD_score variations
- 48 simultaneous
 Bkg_score &
 FD_score variations
- Quality check:
 - signif. > 3, χ^2 < 2
 - 0.5 < rel. eff.
 - variation < 2.5
- Systematic uncertainties assigned range from 4% to 10%

Systematic uncertainties: MC p_{T} shape - D⁺

 p_{T} shape in the MC re-weighted in order to reproduce a realistic distribution:

- reference case: PYTHIA
- p_{T} weights computed using FONLL shape for prompt D
- p_{T} weights computed using FONLL shape for B (mixture)

Systematics: MC p_{T} shape D⁺

Systematic uncertainties: MC p_{T} shape - D⁺

Repeated full analyses with and w/o MC $p_{\rm T}$ weights:

- FONLL
- PYTHIA (reference)
- Syst. unc. estimated considering the effect on $f_{\text{non-prompt}}$ and cross-section
- Assigned uncertainty ranges from 2% to 6% for $D^{\rm +}$

Systematics: D⁺ raw yields extraction ([1-2], [2-3])

- 3 bkg functions (lin, pol2, expo)
- different upper/lower limits
- 5 different rebin
- mean: free
- sigma: fixed to prompt-en. ± unc
 - Syst. unc. estimated as sum in quadrature of RMS and shift w.r.t. the trial distribution
 - Assigned uncertainty range from 4% to 5%

Systematics: D⁺ raw yields extraction ([3-4], [4-5])

- 3 bkg functions (lin, pol2, expo)
- different upper/lower limits
- 5 different rebin
- mean: free
- sigma: fixed to prompt-en. ± unc
 - Syst. unc. estimated as sum in quadrature of RMS and shift w.r.t. the trial distribution
 - Assigned uncertainty range from 4% to 5%

Systematics: D⁺ raw yields extraction ([5-6], [6-8])

- 3 bkg functions (lin, pol2, expo)
- different upper/lower limits
- 5 different rebin
- mean: free
- sigma: fixed to prompt-en. ± unc
 - Syst. unc. estimated as sum in quadrature of RMS and shift w.r.t. the trial distribution
 - Assigned uncertainty range from 4% to 5%

Systematics: D⁺ raw yields extraction ([8-10], [10-12])

- 3 bkg functions (lin, pol2, expo)
- different upper/lower limits
- 5 different rebin
- mean: free
- sigma: fixed to prompt-en. ± unc
 - Syst. unc. estimated as sum in quadrature of RMS and shift w.r.t. the trial distribution
 - Assigned uncertainty range from 4% to 5%

Systematics: D⁺ raw yields extraction ([12-16], [16-24])

- 3 bkg functions (lin, pol2, expo)
- different upper/lower limits
- 5 different rebin
- mean: free
- sigma: fixed to prompt-en. ± unc
 - Syst. unc. estimated as sum in quadrature of RMS and shift w.r.t. the trial distribution
 - Assigned uncertainty range from 4% to 5%

Systematics: D⁺ selection efficiency ([1-2],[2-3])

- 12 different Bkg_score selections (6 tighter, 6 looser)
- 20 different FD_score selections (10 tighter, 10 looser)
- around 45 different Bkg_score & FD_score selections
- Quality check:
 - signif. > 3
 - 0.5 < rel. eff. variation < 2.5
- Systematic evaluated as the sum in quadrature of RMS and shift on the relative variation of the corrected yield
 - Assigned uncertainty range from 4% to 10%
 - ➡ [10%, 6%, 5%, 4%, 4%, 4%, 4%, 4%, 4%, 4%]

Systematics: D⁺ selection efficiency ([3-4],[4-5])

- 12 different Bkg_score selections (6 tighter, 6 looser)
- 20 different FD_score selections (10 tighter, 10 looser)
- around 45 different Bkg_score & FD_score selections
- Quality check:
 - signif. > 3
 - 0.5 < rel. eff. variation < 2.5
- Systematic evaluated as the sum in quadrature of RMS and shift on the relative variation of the corrected yield
 - Assigned uncertainty range from 4% to 10%
 - ➡ [10%, 6%, 5%, 4%, 4%, 4%, 4%, 4%, 4%, 4%]

Systematics: D⁺ selection efficiency ([5-6],[6-8])

- 12 different Bkg_score selections (6 tighter, 6 looser)
- 20 different FD_score selections (10 tighter, 10 looser)
- around 45 different Bkg_score & FD_score selections
- Quality check:
 - signif. > 3
 - 0.5 < rel. eff. variation < 2.5
- Systematic evaluated as the sum in quadrature of RMS and shift on the relative variation of the corrected yield
 - Assigned uncertainty range from 4% to 10%
 - ➡ [10%, 6%, 5%, 4%, 4%, 4%, 4%, 4%, 4%, 4%]

Systematics: D⁺ selection efficiency ([8-10],[10-12])

- 12 different Bkg_score selections (6 tighter, 6 looser)
- 20 different FD_score selections (10 tighter, 10 looser)
- around 45 different Bkg_score & FD_score selections
- Quality check:
 - signif. > 3
 - 0.5 < rel. eff. variation < 2.5
- Systematic evaluated as the sum in quadrature of RMS and shift on the relative variation of the corrected yield
 - Assigned uncertainty range from 4% to 10%
 - ➡ [10%, 6%, 5%, 4%, 4%, 4%, 4%, 4%, 4%, 4%]

Systematics: D⁺ selection efficiency ([12-16],[16-24])

- 12 different Bkg_score selections (6 tighter, 6 looser)
- 20 different FD_score selections (10 tighter, 10 looser)
- around 45 different Bkg_score & FD_score selections
- Quality check:
 - signif. > 3
 - 0.5 < rel. eff. variation < 2.5
- Systematic evaluated as the sum in quadrature of RMS and shift on the relative variation of the corrected yield
 - Assigned uncertainty range from 4% to 10%
 - ➡ [10%, 6%, 5%, 4%, 4%, 4%, 4%, 4%, 4%, 4%]

narrow left

Wide right

Narrow left & right

cut set

Wide left & right

Alternate1

Alternate2

