Near side Yield from two particle identified triggered correlation in Pb-Pb collisions at $\sqrt{s_{NN}} = 5.02 TeV$

Arun Kumar Yadav

Experimental High Energy Physics & Applications Group Variable Energy Cyclotron Centre, Kolkata

Overview of this talk

- Correlation
- Motivation behind the Analysis
- Data set and Analysis cuts
- K_s^0 and Λ triggered correlation function
- Outlook and to do

Correlation

Correlation may be defined as.

$$R = \frac{\rho(x_{1}, x_{2})}{\rho(x_{1})\rho(x_{2})}$$

 $\rho(x_1, x_2)$: conditional probability of finding the particle x_1 , given the particle x_2 has been found.

 $\rho(x_1)$: probability of find the particle x_1

 $\rho(x_2)$: probability of find the particle x_2

Physical processes generate correlation

How correlation relevant in heavy ion collision:

- Parton shower is created via fragmentation
- Particles produced through such fragmentation are correlated.
- Correlation between Trigger particle & Associated particles with the trigger.

Motivation:

- Baryon enhancement over mesons has been observed at intermediate p_T (2 < p_T < 4 GeV/c) in both RHIC (PHENIX Collaboration, Phys. Rev. Let. 91,172301(2003)) and LHC(ALICE Collaboration, *Phys. Rev. Lett. C* 90 (2014) 054901).
- Particles at intermediate p_T can be produced via two possible production mechanisms: hard (fragmentation) and soft (recombination).
- Near side correlation yield using baryon or meson trigger may contain the possible signature of particle production mechanism.

Decrease in correlation could be the evidence about quark coalescence and also explain the baryon enhancement over mesons...

Correlation Function:

$$C(\Delta \eta, \Delta \phi) = \frac{1}{N_{trigg}} \frac{d^2 N_{asso}}{d\Delta \eta d\Delta \phi} = \alpha \frac{S(\Delta \eta)}{B(\Delta \eta)}$$

 $S(\Delta \eta, \Delta \phi)$ is the signal, constructed by taking triggers and associated particles from the same event.

 $B(\Delta \eta, \Delta \phi)$ is the **background**, constructed by taking triggers and associated particles from different events(mixed event method).

Mixed event

Event selection cuts:

(The data set is **lhc15o** (pass2) and the corresponding MC is **lhc20j6a**)

0.1 cm

(0.98, 0.995)

(20., 25.) cm

(0.25, 0.1) cm

(0.1, 0.25) cm

>

0.2 |α|

>

>

<

- kINT7 triggered events with Physics Selection have been used.

- | Vz | < 7 cm
- Centrality 0-80%

Track selection cuts:

- $|\eta| < 0.8$
- Filterbit 768
- chi2 TPC per cluster < 2.5
- No. Of TPC clusters > 80

V0 selection cuts:

- 3< pT < 5 GeV/c
- $|\eta| < 0.6$
- Transverse decay radius > 5 cm
- DCA negative and primary track to Primary Vertex for K⁰,
- DCA negative track to Primary vertex (Λ, Λ^{-})
- DCA positive track to Primary vertex (Λ, Λ^{-})
- V0 cos of pointing angle ($K_{s}^{0} \Lambda$)
- Proper Life time (mL/p) (K^0_{s} , Λ)
- p_{T}^{arm} cut

V0 daughters cut:

- $|\eta| < 0.8$
- Nsigma TPC
- chi2 TPC per cluster < 2.5
- Ncrossedrows >60
- Ncorssedrows / Nfindable > 0.8
- The trigger particles are K_{s}^{0} and Λ with 3 < pT < 5 GeV/c.
- Associated particles are all charged hadrons with 1< pT < 2 GeV/c.

DCA V0 to Prim. Vtx

Efficiency of triggers

Efficiency of Kaon

Efficiency of associated charged hadrons

Peak region and side band regions for correlation function construction

0-10 % K⁰_s triggered

MIXED EVENT

SAME EVENT

:

MIXED EVENT

SAME EVENT

MIXED EVENT

SAME EVENT

Peak region

Background left

and and a second second

Background Right

K⁰_s triggered

Per trigger Correlation function (efficiency corrected)

Peak and $\bar{{\sf bu}}$ lk region $\Delta \phi\,$ projection

Bulk subtracted

pi Maria Ami Maria 1971

рД 11.193 — 1 1922, 1947 1923, 1

0-10% Λ triggered

SAME EVENT

MIXED EVENT

Peak region

Background left

1160-1140 1120 1100 1080 1060 1060 1040 1020 0.5 0 **₫** η -0.5 3 2 Δ¢ -1

Background Right

ΔØ

20 -40 % Λ triggered

yx projection

yx projection

yx projection

yx projection

yx projection

SAME EVENT

yx projection

yx projection

Background Right

MIXED EVENT¹⁷

60 -80 % Λ triggered

SAME EVENT

18 MIXED EVENT

Peak region

Background left

Background Right

Λ triggered

Per trigger Correlation function (efficiency corrected)

¹⁹ Peak and bulk region $\Delta \phi$ projection

Bulk subtracted

Contamination from feed down in Λ

 $N_{trigg}^{final}(p_{\mathrm{T},i}) = C_{purity}^{\Lambda}(p_{\mathrm{T},i}) * (N_{\Lambda}^{measured}(p_{\mathrm{T},i}) - \frac{1}{\varepsilon_{\Lambda}}(p_{\mathrm{T},i})\sum_{i}F_{ij} * C_{purity}^{\Xi}(p_{\mathrm{T},j}) * N_{\Xi}^{measured}(p_{\mathrm{T},j}))$ $N_{\Lambda-h}^{final}(p_{\mathrm{T},i}) = N_{\Lambda-h}^{measured}(p_{\mathrm{T},i}) - \frac{1}{\varepsilon_{\Lambda}}(p_{\mathrm{T},i}) \sum_{i} F_{ij} * (N_{\Xi-h}^{measured}(p_{\mathrm{T},j}) - N_{\Xi-h}^{side-band}(p_{\mathrm{T},j})) - N_{\Lambda-h}^{side-band}(p_{\mathrm{T},i})$

(11)

(12)

Invariant mass Xi:

3 <*p_T*< 7 GeV/c

Topological Variable	Value	
Cascade transv. decay radius R_{2D} (cm)	>0.6	
V ⁰ transv. decay radius (cm)	> 1.2	
DCA bachelor to PV (cm)	> 0.04	
DCA V^0 to PV (cm)	>0.06	
DCA meson V ⁰ track to PV (cm)	>0.04	
DCA baryon V ⁰ track to PV (cm)	>0.03	
DCA V ⁰ daughters (σ)	<1.5	
DCA bachelor to PV (cm)	< 1.3	
Cascade $\cos(\theta_{PA})$	>0.97	
$V^0 \cos(\theta_{PA})$	>0.97	0.995 used
Proper lifetime K_S^0 (cm)	<20	
V ⁰ invariant mass window (GeV/c ²)	± 0.008	
Maximum DCAz bachelor to PV (cm)	< 4	
Selection	Value	
Rapidity y	< 0.5	
$dE/dx (N\sigma)$	<5	
Proper lifetime mL/p	$< 3 \times c\tau$	
Tracking flags for daughters	kTPCrefit	
Daughter Track N _{TPCclusters}	> 70	

Table 3: Selection criteria for charged Ξ candidates

1. Efficiency corrected correlation function constructed for Λ and K_s^0 triggers. 2. Separating the peak region and bulk region needs further analysis. 3.Yet to extract the yield by making away side zero. 4. Feed down correction in Λ needs to be implemented after reducing the background.

5.Invariant mass fit is yet to be optimized.

0-10 % K⁰_s triggered

$$\chi^2 / ndf = 7.9$$

 $\sigma = 0.45$

$40-60 \% K_s^0 triggered$

 $\chi^2 /ndf = 4.55$ $\sigma = 0.40$

60-80 % K⁰_s triggered

 $\chi^2 / ndf = 3.69$

 $\sigma = 0.29$

fKaon projection (Projection X)

fKaon projection (Projection X)

fKaon projection (Projection X)

flambda projection (Projection X)

flambda projection (Projection X)

flambda projection (Projection X)


```
for (Int_t iXi = 0; iXi < nXiTot; iXi++)</pre>
{
   AliAODcascade *Xi=fAOD->GetCascade(iXi);
   if (!Xi) continue;
   AliAODMCParticle* recoMCXi = static_cast<AliAODMCParticle*>(fArrayMC->At(TMath::Abs(Xi->GetLabel())));
    if(!recoMCXi) continue;
      Int_t pdgCode=((AliAODMCParticle*)recoMCXi)->GetPdgCode();
       if( Xi->Pt()< 2.5) continue;</pre>
       if (Xi->Pt()> 7.)continue;
      Double_t yXi = Xi->RapXi();
    if(TMath::Abs(yXi)>0.5) continue;
      if(Xi->CosPointingAngle(fBestPrimaryVtxPos)< 0.97) continue;</pre>
      AliAODTrack *pitrack = (AliAODTrack *) ( Xi->GetDecayVertexXi()->GetDaughter(0) );
      if(pitrack->Charge()==0) continue;
      Double_t nclus_pi =pitrack->GetTPCNcls();
         if(nclus_pi<70.) continue;</pre>
   AliAODMCParticle* recoMCpi = static_cast<AliAODMCParticle*>(fArrayMC->At(TMath::Abs(pitrack->GetLabel())));
   Int_t pdgcode=((AliAODMCParticle*)recoMCpi)->GetPdgCode();
   cout<<"the bachelor track is "<<pdgcode<<endl;</pre>
   AliAODTrack *VOtrack = (AliAODTrack *) ( Xi->GetDecayVertexXi()->GetDaughter(1) );
  11
            AliAODMCParticle* recoMCv0 = static_cast<AliAODMCParticle*>(fArrayMC->At(TMath::Abs(V0track->GetLabel())));
  11
           Int_t pdgcodee=((AliAODMCParticle*)recoMCv0)->GetPdgCode();
   cout<<"the v0 track is "<<V0track->Charge()<<endl;</pre>
```

}

- 1. Dilution in yield ratio with centrality is observed but the baryon triggered yield is more than the meson triggered yield ??
- 2. Yet to extract the yield by making away side zero.
- 3. There are more no. of lambda triggers in 0-10 % and 20-40 % than Kaon triggers??
- 4. Invariant mass fit is yet to be optimized.

fReco_primary_Kaon_nopid projection

fTruth_Lambda projection

fReco_Lambda projection

fReco_Kaon projection

fReco_Lambda projection

fReco_primary_Lambda_nopid projection

h49

Mean 3.985 Std Dev 0.5714

Entries

3756 3.985

With combined Nsigma<2 cut (TPC+TOF)

With NsigmaTPC<3 cut

20-40 %

60-80 %

(With NsigmaTPC<3 cut)

Efficiency of Lambda

Lambda and antiLambda efficiency are in similar range now

Fig. 13: A reconstruction efficiency as a function of p_T in the rapidity range |y| < 0.5 for SE (strangeness enriched) and GP (general purpose) Monte Carlo datasets.

Now Lambda and antiLambda efficiency are similar

How to apply the secondary contamination correction?

1. Do I need to plot $C(\Delta \eta, \Delta \phi, centrality, p_T)$? 2. Xi-h correlation function should be corrected for efficiency of Xi?

