

To study the two particle correlation functions *R***2 (∆***η***, ∆***φ***) and** *P***² (∆***η***, ∆***φ***) in p-p collisions at √***s* **= 13 TeV as a function of charged particle multiplicity and transverse spherocity**

Subhadeep Roy¹ Dibakar Bauri¹, Baidyanath Sahoo¹, Sadhana Dash¹, Basant Kumar Nandi¹, Sumit Basu³ and Claude A. Pruneau 2 'IIT Bombay, India ²Wayne State University, USA ³ Lund University

ALICE-STAR India Collaboration meeting 22/11/2023

Outline

High energy collision and QGP

High energy collision and QGP

Credit: Cartoonstock

High energy collision

- Two particle correlation studied in terms of $\Delta \eta$ and $\Delta \varphi$ of a pair helped in characterising the medium formed with during high energy collisions
- Specially, observations like anisotropic flow, jet-quenching etc. revealed several interesting properties of the medium

Observables

 $\rho_2(\eta_1)$

Normalized two-particle cumulant :

$$
R_2(\eta_1, \varphi_1, \eta_2, \varphi_2) = \frac{\rho_2(\eta_1, \varphi_1, \eta_2, \varphi_2)}{\rho_1(\eta_1, \varphi_1)\rho_1(\eta_2, \varphi_2)} - 1
$$
\nNumber correlation

\nWhere, $\rho_1(\eta, \varphi) = \frac{1}{\sigma_1} \frac{d^2 \sigma_1}{d\eta d\varphi}$, No. of particles $\langle \Delta p_T \Delta p_T \rangle(\eta_1, \varphi_2, \eta_2 \rangle) = \frac{1}{\sigma_2} \frac{d^4 \sigma_2}{d\eta_1 d\varphi_1 d\eta_2 d\varphi_2}$, and no. of pairs

\n• LS: Like-sign pairs

\n• LS: Unlike-sign pairs

\n• US: Unlike-sign pairs

\n• US: Unlike-sign pairs

\n• $\sigma^{(LS)} = \frac{1}{2}(\mathcal{O}^{(++)} + \mathcal{O}^{(-)})$

\n• **CL: Charge Independent**

\n• $\mathcal{O}^{(CS)} = \frac{1}{2}(\mathcal{O}^{(++)} + \mathcal{O}^{(++)})$

\n• **CD: Charge Dependent**

\n• $\mathcal{O}^{(CS)} = \frac{1}{2}(\mathcal{O}^{(LS)} + \mathcal{O}^{(CS)})$

Transverse Momentum Correlator :

$$
P_2(\eta_1,\phi_1,\eta_2,\phi_2) \;\;=\;\; \frac{\langle \Delta p_T \Delta p_T \rangle (\eta_1,\phi_1,\eta_2,\phi_2)}{\langle p_T \rangle^2}.
$$

Momentum correlation

Where,
\n
$$
\langle \Delta p_{T} \Delta p_{T} \rangle (\eta_{1}, \varphi_{1}, \eta_{2}, \varphi_{2}) = \frac{\int_{p_{T,\min}}^{p_{T,\max}} \Delta p_{T,1} \Delta p_{T,2} \rho_{2}(\vec{p}_{1}, \vec{p}_{2}) d p_{T,1} d p_{T,2}}{\int_{p_{T,\min}}^{p_{T,\max}} \rho_{2}(\vec{p}_{1}, \vec{p}_{2}) d p_{T,1} d p_{T,2}}
$$
\nand
\n
$$
\Delta p_{T,i} = p_{T,i} - \langle p_{T} \rangle
$$
\n
$$
\frac{1}{2} \langle O^{(++)} + O^{(-)} \rangle
$$
\n
$$
\frac{1}{2} \langle O^{(++)} + O^{(++)} \rangle
$$
\n
$$
\frac{1}{2} \langle O^{(LS)} + O^{(US)} \rangle
$$
\n
$$
\frac{1}{2} \langle O^{(LS)} + O^{(US)} \rangle
$$
\n
$$
\frac{1}{2} \langle O^{(}) \rangle
$$
\n
$$
\frac
$$

C. Pruneau, S. Gavin, and S. Voloshin Phys. Rev. C66, 044904 (2002)

Motivation

Delayed hadronisation and QGP with *R² CD*

Late-Stage Production: Less Diffusion due to less scattering \rightarrow Smaller width

S. Bass, P. Danielewicz, and S. Pratt Phys.Rev.Lett. 85, 2689 (2000)

Results

Correlation structures in different Multiplicity classes

The Apparatus (ALICE)

```
Analysed in pp collisions
Energy (√s) : 13 TeV
```
Data set : LHC18

Events selection : Trigger: kINT7 (MB)

|*V***z | ≤ 8.0 cm**

```
Multiplicity estimation :
V0M
```
Multiplicity classes: 0-5%, 15-20%, 40-50%, 70-80%

```
Filter Bit : 96 (Global tracks, 
ITS+TPC)
|DCA_2| \le 0.2 cm, |DCA_{xy}| \le 0.2cm;
No. of Cluster : (TPC) ≥ 70
0.2 ≤ pT
 ≤ 2.0 (GeV/c); |η| ≤ 0.8
```


Evolution of R_2^{Cl} **with multiplicity**

The correlation function feature a prominent near-side peak centered at ($\Delta \eta$, $\Delta \varphi$)=(0,0) as well as a small away-side structure centered at $\Delta \varphi = \pi$ and the amplitude increases with decreasing multiplicity

Evolution of P_2^{Cl} with mutiplicity

The correlation function feature a prominent near-side peak centered at ($\Delta \eta$, $\Delta \varphi$)=(0,0) as well as a small away-side structure centered at $\Delta \varphi = \pi$ and the amplitude increases with decreasing multiplicity

Projection plots

The amplitudes of $R_2^{\text{CI}}(\Delta \eta, \Delta \varphi)$ and $P_2^{\text{CI}}(\Delta \eta, \Delta \varphi)$ Increases monotonically from high to low multiplicity classes

- ➢ The widths increase monotonically in Pb-Pb collisions from peripheral to central regions for both R_2 and P_2 except for P_2 in peripheral region
- \ge For p-Pb case, the widths have weak dependence
- ➢ For pp case, widths decrease monotonically from low to high multiplicity bins

Evolution of R_2^{CD} **with mutiplicity**

We see a dip at ($\Delta \eta$, $\Delta \varphi$)=(0,0) is expected largely from HBT effect and the amplitude Increases with decreasing multiplicity

Evolution of P_2^{CD} **with mutiplicity**

We see a dip at ($\Delta \eta$, $\Delta \varphi$)=(0,0) is expected largely from HBT effect and the amplitude Increases with decreasing multiplicity

Projection plots

The amplitudes of $R_2^{\text{CD}}(\Delta \eta, \Delta \varphi)$ and $P_2^{\text{CD}}(\Delta \eta, \Delta \varphi)$ increases monotonically from high to low multiplicity classes

- ➢ The width decrease monotonically in Pb-Pb collisions from peripheral to central regions for R_2 and P_2
- ➢ For p-Pb case, the widths have noticeable reduction for R_2 whereas widths of P_2 have reverse trend
- \rightarrow For pp case, R_2 width decreases monotonically from low to high multiplicity bins while P_2 width has weak dependence on multiplicity

- ➢ The width decrease monotonically in Pb-Pb collisions from peripheral to central regions for R_2 and P_2
- ➢ For p-Pb case, the widths have noticeable reduction for R_2 whereas widths of P_2 have reverse trend
- \triangleright For pp case, R_{2} width decreases monotonically from low to high multiplicity bins while P_2 width has weak dependence on multiplicity

Study with transverse spherocity

Proton-Proton collisions: Interesting?

• High multiplicity p-p collisions has produced similar observations like heavyion collisions (long range near-side correlation structure, strangeness enhancement and collective flow etc.)

Dissecting a p-p collision :

• MPI driven UE are expected to produce QGP like effects even in small systems

Transverse spherocity

Unique tool to distinguish events based on their geometrical shape in the transverse plane (XY)

Multiplicity Vs. Spherocity

Spherocity

The Apparatus (ALICE)

Analysed in pp collisions Energy (√*s***) : 13 TeV Data set : LHC18 Events selection : Trigger: kINT7 (MB) |***V***z | ≤ 8.0 cm Multiplicity estimation : V0M**

```
Filter Bit : 96 (Global tracks, 
ITS+TPC)
|DCA_2| \le 0.2 cm, |DCA_{xy}| \le 0.2cm;
No. of Cluster : (TPC) ≥ 70
0.2 ≤ pT
 ≤ 2.0 (GeV/c); |η| ≤ 0.8
```


Results

40-60%

 $\frac{2}{\Delta \varphi}$ (rad)

 $\mathbf{0}$

 $P_2^{\text{Cl}} = 1/2(P_2^{\text{US}} + P_2^{\text{LS}})$

25

 P_2^{CD} =1/2(P_2^{US} - P_2^{LS})

Spherocity definition : A step towards the solution

$$
\text{Spherocity}: \quad S_0 = \frac{\pi^2}{4} \left(\frac{\sum_i |\vec{p}_{T_i} \times \hat{n}|}{\sum_i p_{T_i}} \right)^2
$$

- 1. For isotropically distributed events a single high- $p_{\rm T}$ track can drive the entire S_0 calculation towards 0
- 2. Only a single high- $p_{\rm T}$ charged particle can carry en--ormous weight in spherocity calculation but not a neutral particle (pions).

- Re-normalise the weights by setting $|\vec{p}_T| = 1.0 \text{GeV}/c$.
- Measurement becomes more robust against individual tracks with large $p_{\rm r}$
- The charged particles can be used as a proxy of the event topology for neutral particles

Transverse spherocity

Distinguishes events based on their geometrical shape in the transverse plane (XY)

$$
S_0 = \frac{\pi^2}{4} \min_{\hat{n}} \left(\frac{\sum_{i} |\overrightarrow{p_{T_i}}; p_{T_i} = 1} \times \hat{n}|}{\sum_{i} |\overrightarrow{p_{T_i}}|_{p_{T_i} = 1}} \right)^2
$$

"Jetty"

 $R_2^{\,(Cl)}$ and $P_2^{\,(Cl)}$

 $R_2^{\,(CD)}$ and $P_2^{\,(CD)}$

Data Results

Data Results

 $R_2^{\text{Cl}} = 1/2(R_2^{\text{US}} + R_2^{\text{LS}})$

 $P_2^{\text{Cl}} = 1/2(P_2^{\text{US}} + P_2^{\text{LS}})$

Data Results

 R_2^{CD} =1/2(R_2^{US} - R_2^{LS})

 P_2^{CD} =1/2(P_2^{US} - P_2^{LS})

Further investigation

 $R_2^{\text{Cl}} = 1/2(R_2^{\text{US}} + R_2^{\text{LS}})$

The plan is to investigate these correlation structure for different multiplicity event classes Correlation plot

A bit of modification

$$
S_0 = \frac{\pi^2}{4} \min_{\hat{n}} \left(\frac{\sum_{i} |\overrightarrow{p}_{T_i; p_{T_i}=1} \times \hat{n}|}{\sum_{i} |\overrightarrow{p}_{T_i}|_{p_{T_i}=1}} \right)^2
$$

Calculation of spherocity with $N_{ch} \geq 10$

 -5

 -1

 $\overline{0}$

 $4₂$

 $\overline{2}$

 $\Delta \varphi$ (rad)

 $\overline{0}$

 -10

 $\overline{\mathbf{c}}$

 $\Delta \varphi$ (rad)

 $\overline{0}$

 -1

0

 \mathcal{A}_{γ}

- ➢ Fix the baseline and study the systematic variations
- ➢ Paper proposal

Spare Slides

 $R_2^{\text{Cl}} = 1/2(R_2^{\text{US}} + R_2^{\text{LS}})$

 $P_2^{\text{Cl}} = 1/2(P_2^{\text{US}} + P_2^{\text{LS}})$

Generator level :

 R_2^{CD} =1/2(R_2^{US} - R_2^{LS})

Generator level :

 $P_2^{\text{CD}} = 1/2(P_2^{\text{US}} - P_2^{\text{LS}})$

Generator level :

R_2 ^{US} & R_2 ^{LS} Contribution to R_2 ^{CI}

R_2 ^{US} & R_2 ^{LS} Contribution to R_2 ^{CI}

