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Introduction
• For accelerator applications, Nb3Sn wires are assembled in the form of Rutherford cables, applying significant deformation 

to the wire, especially at the cable edges

• The resulting distortion of the wire cross-section before heat treatment can impact the Ic, RRR and stability:
• Effects depend on the wire design, cabling and heat treatment parameters, and can vary between spools/billets

• Important to assess the behaviour both for each type of wire and for individual billets

• As cable production consumes significant wire lengths and time, uniaxial rolling is commonly used as an (imperfect) proxy 
for initial acceptance tests

• Extensive data from systematic testing are available from the Bruker RRP® and PIT wire designs procured at scale for 
magnet production

• There is also a need to characterise a broader range of wire designs in the context of the High Field Magnets (HFM) 
programme:
• Different RRP® layouts, especially at larger diameter

• Wires developed in collaborations with other manufacturers: notably distributed tin (DT) wire from JASTEC and KAT

• Ultimately, wires developed towards the challenging performance targets of ultimate Nb3Sn dipole magnets, e.g. a non-Cu Jc of 
1500 A/mm2 (4.2 K 16 T)

• This presentation summarises the rolling and cabling behaviour of several wire types, combining rolling studies of individual
spools with statistical analysis of rolling and cabling degradation over large-scale procurement

28 September 2023 2



Rutherford Cable Deformation
• Strands at the centre of the cable width typically have a 

nominal thickness reduction ~11 %
• Rolling studies typically performed for 10 % and/or 15 % 

uniaxial rolling reduction

• The real deformation, especially at the (thin) edge, is 
more severe and not uniaxial
• All strands experience this periodically, at a transposition 

length typically much shorter than the lengths of samples 
used for Ic and RRR

• Stresses align along shear planes, but the resulting 
deformation of sub-elements depends on the wire type 
and its local orientation [1]

• Sub-element deformation affects performance via 
several mechanisms:
• Sub-element shearing and merging

• Changes in local barrier thickness and diffusion distances
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Previous Work
• The rolling and cabling degradation of RRP® and PIT wires has been extensively studied 

over many years, especially for wires of interest for HL-LHC and LARP
• The key deformation characteristics were imaged, and their impact on superconducting 

performance directly observed, many years ago
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Wire Types
• Three wire types of interest:

• RRP® (Bruker OST) – internal tin sub-elements in a distributed barrier configuration

• PIT (Bruker EAS) – powder-in-tube filaments, with an additional common diffusion barrier in the ‘bundle-barrier’ (HEP) 
variant (‘PIT-BB’)

• Distributed tin (JASTEC, KAT) – internal tin wire with alternating Nb and Sn(Ti) modules and a common external 
diffusion barrier
• R&D wires developed in collaborations in the context of the High Field Magnets programme

• Each type has a distinct deformation behaviour and would be expected to show a different sensitivity of Ic
and RRR to deformation
• For RRP®, different layouts/restacks can be compared

• For RRP® and PIT, characterisation of large procured quantities permits statistical analysis
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RRP® Wire Characteristics
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HL-LHC HFM

11 T dipole MQXF ERMC-1 DEM-1.1

Diameter (mm) 0.7 0.85 1.0 1.1

Layout 108/127 162/169

ds (µm) 45 54 58 64

Cu/non-Cu 1.15 ± 0.1 1.2 ± 0.1 0.9 ± 0.2

Nb:Sn 3.6 (reduced Sn) 3.4 (standard Sn)

Heat treatment 650 °C 50 h 665 °C 50 h 650 °C 50 h 665 °C 50 h
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RRP®: Statistics from Acceptance Tests
• For HL-LHC, 108/127 RRP® was procured 

in significantly quantities at 0.7 mm (for 11 T 
dipoles) and 0.85 mm (for MQXF) diameter
• Acceptance tests included measurements of 

every spool

• 15 % rolling data for all billets

• Similar testing, but with a lower overall 
quantity and sampling rate, applied to 
162/169 RRP® wire procured for FCC/HFM

• The following slides include both:
• Studies at different rolling reductions for 

individual spools

• Statistical evaluation of the behaviour over all 
procured series spools

• In each case, data are presented only for 
the standard heat treatment
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RRP® Rolling: Key Features
• Visually apparent that progressive rolling:

• Increases subelement aspect ratios

• Locally reduces diffusion barrier (and Nb filament pack) thickness

• Shears or merges adjacent subelements

• These observations can be quantified by image analysis:
• Performed for a set of adjacent samples from one spool reacted in a single heat treatment
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RRP® 108/127: Aspect Ratio
• The average subelement aspect ratio increases, and the distribution of aspect ratios broadens, with 

increasing rolling reduction
• Particularly sharp increase from 20 % to 30 % rolling, corresponding to more frequent shearing/merging of 

subelements

• Similar observations for subelement area and perimeter
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RRP® Rolling: After Reaction
• After reaction, the aspect ratio distribution remains similar but areas expand (due to the expected 

volumetric expansion of Nb → Nb3Sn)

• At 20 % and 30 % rolling, local instances of complete barrier reaction and/or breaks due to shearing 
become more prevalent, resulting in increased Sn loss to the matrix, and intermittent discontinuities and 
contacts in Nb3Sn subelements
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RRP®: Effect on Ic and RRR
• Ic and RRR both decrease progressively on rolling, on average, with a steeper gradient between 15 % 

and 20% rolling reduction
• Ic – significant spread at modest rolling reduction: average ‘degradation’ is negative, -0.6 %, for 15 % rolling

• RRR – less variable, with a significant degradation even for small rolling reductions: average 36 % for 15 % rolling
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Comparison of RRP® Layouts
• For 15 % rolling, acceptance test statistics are available for a significant number of spools

• Relative to 108/127 at 0.85 mm, 162/169 at 1.1 mm shows (on average):

• Higher Ic degradation –1.5 %, cf. -0.6 %

• Lower RRR degradation – 23 %, cf. 36 %
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Comparison of RRP® and PIT (1)
• The behaviour is similar for all tested RRP® wires

• Differences between (say) 108/127 and 162/169 may 
also be partly due to differing diameter, Cu/non-Cu, Sn 
stoichiometry, or HT cycles
• For the same restack, Ic degradation slightly higher for the 

larger-diameter wire

• PIT wires differ significantly in design (round filaments) 
and the nature of imperfections

• … but the evolution of the aspect ratio distribution of 
PIT and RRP® wires on rolling is remarkably similar
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Comparison of RRP® and PIT (2)
• The performance impact of filament 

distortion for PIT BB does differ 
significantly

• Tin loss through locally fully-reacted or 
broken tubes:
• Barely affects the measured RRR (due to 

the ‘bundle barrier’)

• Significantly reduces Ic, as the reaction of 
the filament stops

• Consequently, PIT wire shows markedly 
higher average Ic degradation (mean 
8.8 %) on 15 % rolling, and a much 
broader distribution
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Comparison with Cables
• Ic degradation on cabling depends on the cable configuration

• Taking statistics for cables of the HL-LHC MQXF design, using 
0.85 mm strand, the mean Ic degradation is:
• RRP® 108/127: 2.8 %

• PIT BB: 11 %

• …in both cases, significantly higher than for 15 % rolling:
• For RRP, for the individual spool test, this is comparable to a 

rolling reduction of 17.5 %

• For PIT, the distribution of degradation values is too broad to 
compare with a single example

• RRR degradation is:
• For RRP, 16.9 % on average – approximately half that of 15 % 

rolled samples

• Negligible for PIT due to the external barrier

• Assessing degradation of RRR by rolling is conservative, as 15 % 
reduction is larger than experienced across the majority of the 
cable width

• Local degradation at the cable edges should be separately 
measured locally
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Local RRR
• Typically, high purity (high RRR) Cu is used throughout the cross-section in 

manufacturing

• At the time of cabling, the wire is already heavily cold-worked from wire 
drawing
• Little further change expected in Cu RRR or resistivity

• Small differences across the cross-section may result from differences in starting Cu 
forms, grain sizes and wire processing routes etc.

• RRR is measured after heat treatment: variations are usually dominated by 
tin contamination
• Longitudinally – for an extracted strand, the deformation locally at the cable edge 

reduces RRR

• In the cross-section – RRR is often very high in regions protected by thick/intact 
diffusion barriers, but can be reduced strongly locally in interfilamentary regions
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Local RRR Degradation at Edges
• Local measurement of RRR confirms the expected behaviour

• Relative to the standard (for CERN) RRR measurement, RRR is:
• Higher at the cable centre

• Lower at the edges, especially the thin edge

• Values below are averages for two extracted strand samples of MQXF cables (RRP® wire)

• At present, samples may be bent for mounting in a sample holder optimised for straight 
samples: systematic measurement of local RRR will require a new design
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Local RRR Across Wire Cross-Sections (1)

• For wires with a common external barrier, etching the outer 
Cu allows the RRR to be measured for the central matrix only
• For DT wires, this region is intentionally used for Sn transport, so it 

is not included in the Cu area for Cu/non-Cu

• For PIT-BB, the barrier was added to retain acceptable RRR with a 
heat treatment achieving high Ic, so some RRR degradation of the 
matrix was anticipated, but internal Cu area was included in 
Cu/non-Cu

• Further study is needed to assess the impact of RRR variations in 
the cross-section on stability, protection etc.
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Local RRR Across Wire Cross-Sections (2)

• The RRR of the central Cu of PIT-BB is very low, and reduced further on rolling
• The RRR of the outer Cu alone is estimated to be very high, as for DT wires

• For a sample of wire with known low starting Cu RRR, the central Cu did not have a lower RRR after 
heat treatment than typical wires: the overall RRR is dominated by the outer Cu

• For a wire produced with improved filament geometry, the RRR was significantly improved, with the 
central region RRR (~140) potentially high enough to consider as part of the stabiliser
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PIT-BB Type Sample Rolling RRR Etched RRR 

(central Cu)

Estimated RRR 

of outer Cu

Series Wires 1 0 % 188 23.5 361

15 % 189 7.7 353

2 0 % 134 11.5 319

15 % 151 6.3 337

Low Cu RRR 3 0 % 76.2 26.4 -

Improved Geometry 4 0 % 250.1 139.8 -
RRR measurements courtesy of 

Al Baskys and Joanna Kuczynska



Distributed Tin Wires
• Two manufacturers, JASTEC and KAT, have developed ‘distributed tin’ wires:

• KAT’s designs have also included a copper core protected by an additional diffusion barrier
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Diffusion barrier

Nb filaments

Cu

Cu

Sn(Ti)

JASTEC KAT

Supplier d (mm) Cu/non-Cu Nb/Sn modules Mean piece length (m)

KAT 1.0 0.93 138 + 54 1430

JASTEC 1.1 1.08 138 + 73 150



Cabling Trials at CERN
• Short trial cables successfully produced using cable designs 

established for magnet R&D activities
• Rolling and cabling study for KAT previously reported at ASC 2022
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Wire Cable

Supplier d (mm) Layout Strands
Key-

stone

Width 

(mm)

Mid-thickness 

(mm)
Core

KAT 1.0 FalconD 40 0.5° 20.95 1.8 14×0.025 mm 316L

JASTEC 1.1 R2D2 HF 21 None 12.579 1.969 None

KAT (FalconD) JASTEC (R2D2 HF)



Cable Cross-Sections
• Optical micrographs show, as expected:

• Uniform strand cross-sections in the middle of the cable width

• Significant distortion of module geometry and barrier thinning in the most deformed edge location
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JASTEC Rolling: Key Features
• As observed for previous DT wires, Sn regions deform and merge, 

whilst Nb modules are largely displaced intact
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JASTEC Rolling: Aspect Ratios
• Aspect ratios do not show large increases, or form bands relative to the rolling direction:

• Unlike RRP® or PIT – see 3-MO-CS2-06S this afternoon

• Large variation in Nb modules between longitudinal positions, as broad Sn regions can open up locally
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JASTEC: Reacted Strands
• After heat treatment and the Nb → Nb3Sn volume expansion, the separation of modules is locally small

• Difficult to be certain if modules are in contact: colour maps below show area, but can be considered to highlight potential clusters 
of different numbers of modules in contact

• As expected, the most distorted position at the cable edge exhibits larger clusters of modules potentially in contact → potential 
increase in deff and/or stability impact

• Considering only well-separated modules, the distribution of aspect ratios remains comparable to unreacted samples
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KAT: Reacted Strands
• For KAT reacted strands, observations for subelement shape are similar to JASTEC

• In addition:
• The area distribution plots highlight 6 clusters of Nb3Sn regions in close proximity after reaction, which could contribute 

to increase deff

• For larger rolling reductions, the internal diffusion barrier is severely deformed
• The internal Cu volume is small, and not critical to Cu/non-Cu, but it may influence the deformation of neighbouring modules

• Unreacted Nb is evident in the centre of some Nb modules, indicating the potential for increase Ic if tin supply can be 
improved by design or heat treatment
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RRR
• The RRR of JASTEC and KAT rolled samples and extracted strands is extremely high due to the largely 

intact external diffusion barrier
• RRR degradation reached ~50 % at 30 % rolling reduction for both JASTEC and KAT wire

• RRR degradation appears a little higher at small rolling reductions for JASTEC, but few samples tested
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Critical Current and Stability (1)
• For both the present DT wires, samples have frequently quenched 

in Ic testing at 12–15 T: difficult to obtain robust statistics for Ic(B) 
performance

• Self-field instability would be expected to be challenging for these 
large diameter (1.0 and 1.1 mm), high Jc designs
• Increased deff locally, e.g. at contact between subelements, may also 

contribute to magnetisation instability

• To evaluate the behaviour, multiple V–I transport measurements 
have been performed at both 4.3 K and 1.9 K:
• Multiple measurements at each test field, starting at 15 T and proceeding 

downwards in small steps

• Samples tested in pairs of different deformation state (rolled, extracted)
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Critical Current and Stability (2)
• For the JASTEC wire:

• A strand extracted from the cable appears 
to quench close to the onset of the Ic
transition at:
• 1.9 K: 12 T and above

• 4.3 K: ~8 T and above in most cases

• Extracted strand quench current curves at 
1.9 K and 4.3 K intersect at ~ 8 T

• For the virgin (round) wire:
• At 4.3 K, values appear to be stability limited 

below ~13.5 T

• Subsequent quench currents at 4.3 K, and all 
values at 1.9 K, are anomalously low 
compared to the extracted strand
• Additional samples currently in testing
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Critical Current and Stability (3)
• Comparing the JASTEC extracted strand and KAT samples, performance is less severely stability limited 

at low field for the JASTEC wire
• This could potentially be addressed by heat treatment optimisation as well as design changes

• Further tests are in progress
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Future Prospects: Hf, Internal Oxidation
• A significant increase in Jc (relative to the RRP® baseline) probably requires new approaches:

• Hf alloying was proposed to cause Nb3Sn grain refinement by suppressing Nb alloy recrystallisation (NHFML, FSU, US)
• S. Balachandran et al., Supercond. Sci. Technol. 32 044006 (2019)

• Internal oxidation of Zr or Hf in Nb alloys forms oxide precipitates, acting as pinning centres and refining Nb3Sn grain 
sizes
• X. Xu et al., Appl. Phys. Lett. 104 (8) 082602 (2014)

• Internal oxidation has been implemented in both PIT and internal tin wire types
• The hardening behaviour of Hf-alloyed Nb-Ta poses some challenges in wire drawing, and potentially also in subsequent 

cabling

• PIT wires produced at Hyper Tech (in collaboration with Fermilab and OSU) have shown excellent Jc, but:
• There is currently limited validation of stability and cabling behaviour

• Many of the same optimisation challenges may apply as for conventional Bruker PIT wires

• Rod-in-tube wires are under development at UNIGE in collaboration with CERN
• A similar Jc enhancement has been observed in model samples, and wire development in progress

• An oxide powder is needed as an oxygen source: its configuration will also affect drawing and cabling behaviour
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X. Xu et al., Supercond. Sci. Technol. 36 035012 (2023)

Hf Zr

SEM cross-sections of reacted Hyper Tech Hf-

and Zr- alloyed internal oxidation PIT wires
Candidate oxygen source configurations for rod-in-tube 

wires

G. Bovone et al., Supercond. Sci. Technol. 36 095018 (2023)

S. Balachandran et al., 

https://dx.doi.org/10.2139/ssrn.4303410

https://dx.doi.org/10.2139/ssrn.4303410


Summary (1)
• The different deformation characteristics of RRP®, PIT (BB) and DT wires 

have been assessed by electron microscopy, image analysis, and Ic and 
RRR measurement
• RRP® and PIT wires show a similar evolution of subelement/filament aspect ratio, but 

the latter is more susceptible to Ic degradation

• For DT wires, the deformation is mostly accommodated by displacement of Nb 
modules and deformation of Sn modules

• Ic degradation is significantly higher (but still acceptably low, <5 %) for RRP® 162/169 
(1.1 mm) than 108/127 (0.85 mm)

• 15 % rolled samples underestimate cabling degradation of Ic (17.5 % rolling 
may be more representative), but conservatively overestimate RRR 
degradation (as severe degradation is localised to the edges)
• Work is in progress to evaluate RRR locally at the cable edge

• Modelling of the strand deformation during rolling and cabling is planned
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Summary (2)
• Distributed tin wires with comparable subelement size produced by JASTEC and KAT have 

been successfully cabled

• Deformation behaviour is broadly similar for both: Nb modules tend to move before they 
deform, with little increase in aspect ratio
• RRR degradation on rolling and cabling is low, from a high baseline

• There is little indication of Ic degradation on rolling or cabling, but data are limited due to stability 
issues

• For JASTEC strand extracted from a cable, quench currents at 1.9 K appear close to Ic, but 
results for the virgin strand were inconsistent
• Tests of additional samples are in progress

• There are promising indications for the potential of distributed tin wires, and that further 
heat treatment optimisation would be beneficial

• Future trends in wire development, and the sensitivity of deformation behaviour to exact 
wire design and heat treatment, demonstrate the need for further study.
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