

Low energy hydrogen anions source for matter/antimatter precision experiments Matrix Isolation Sublimation Technique as a H⁻ source

PSAS'2024

Zürich, Switzerland Levi Azevedo – Ldeazevedo@if.ufrj.br L. O. A. Azevedo*, R. J. S. Costa, W. Wolff, A. N. Oliveira*, R.L. Sacramento*, D.M. Silveira*, C. L. Cesar* *ALPHA Collaboration - CERN Ref: "Adaptable platform for trapped cold electrons, hydrogen and lithium anions and cations". *Commun Phys* 6, 112 (2023). Matrix Isolation Sublimation (MISu)

> Developed at LASER-IF/UFRJ

Cold beams of Atoms and Molecules
Doopler Sensitive Laser spectroscopy

> Versatile to diferente species

- Simple atomic systems to molecules
- > Adaptable Technique
 - Laser Spectroscopy
 - Time of Flight Mass Spectrometer
 - Traps for confining cold particles
 - Penning-Malmberg trap
 - > Magnetic trap for hydrogen (H) in a near future

R. L. Sacramento, et al., Matrix Isolation Sublimation: an apparatus for producing cryogenic beams of atoms and molecules, Rev. Sci. Instrum. 86, 073109 (2015)

A. N. Oliveira, et al., Heteronuclear molecules from matrix isolation sublimation and atomic diffusion, J. Chem. Phys. 149, 084201 (2018)

MISu - Steps źφ ≈4 K ŷ â Copper Sapphire NiCr film Matrix (Ne) Ablation Laser Gas Tube LM (Ne) LiH/Li PDM

2

MISu - Steps

MISu - Steps

ŷ 2. Laser Ablation

- Pulsed Laser of 5 ns pulses
- Typical energy: 1 mJ
- ND: YAG (1064 nm or 532 nm)
- Solid Targets (LiH, TiH₂ and Li Applicable to other targes)

MISu - Steps

3. Sublimation

Heat pulse to the Sapphire

- Sublimation plume
- > Cold beams
- Spectroscopy
 - > Longitudinal Laser (L_M)

MISu - Main setup

5

MISu - Variant

- > Typical MISu cycle
 - 1. Growth
 - 2. Ablation during or after growth
 - 3. Sublimation
- > MISu variant (New-MISu)
 - 1. Growth
 - 2. Ablation followed by a partial or total sublimation
 - Produced particles stay shorter times inside matrix
 - Depending on delay Ions are "deflected" by the sublimation cloud

Implanted

Particles

Plume

MISu Setup – With Penning-Malmberg Trap

Experimental cycle

- > Few seconds production cycle
- > +5000 of particles trapped per pulse
 - Can be improved
 - > Higher ablation energy
 - > Stronger guiding magnetic field
 - Adding more coils for guiding charged particles
 - > Stronger trapping magnetic field
 - > Increasing the size of aperture
 - > Trapping on axis (Sapphire axis)

Time (µs)

Time of Flight Mass Discriminator (ToF-MD)

10

11 H^- to e^- proportion

> Trap instability

$$\omega_c > \sqrt{2} \omega_z \quad \rightarrow \quad \omega_c = \frac{q B}{m} \quad \& \quad \omega_z \propto \frac{1}{\sqrt{m}}$$

- > Controling trapping potentials
 - "Squeezed" trap
 - > Trap particles (regular trap)
 - > Morph to squeezed trap -10V / 10V / -10V Higher ω_z
 - > Morph to regular trap
 - > Dump
 - > H^- becomes unstable but not e^-

12 H^- to e^- proportion

- > Controling magnetic field
 - Weaker Guiding field & Weaker trap magnetic field
 - > Guide particles with weaker magnetic field
 - > Trap particles (regular trap)
 - Trap with low B-field

Lower ω_c

- > Dump
- > H^- are not guided into the trap $\frac{2}{2}$ 1000
- $\rightarrow e^-$ are still guided into the trap

Loading a neutral trap

- > Trapping the H^- and e^- in a Penning-Ioffe-Pritchard*
 - Cyclotron cooling of e⁻ Sympathetic cooling of H^-
 - Near threshold Photodetachment of H^-
 - > Low recoil energy given to the remaining *I*^{*}

Squires, T. M., Yesley, P., & Gabrielse, G. (2001). *Stability of a Charged Particle in a Combined Penning-Ioffe Trap. Physical Review Letters, 86(23), 5266–5269.*

 $\sigma \propto k^{2l+1}$ or $\sigma \propto \Delta E^{l+1/2}$

Wigner, E. P. (1948). *On the Behavior of Cross Sections Near Thresholds. Physical Review, 73(9), 1002–1009.*

Lykke, K. R., Murray, K. K., & Lineberger, W. C. (1991). *Threshold photodetachment ofH–. Physical Review A, 43(11), 6104–6107.*

13

Conclusions

Azevedo, L.O.A. *et al.* Adaptable platform for trapped cold electrons, hydrogen and lithium anions and cations. *Commun Phys* **6**, 112 (2023).

- > Low energy H^- production
 - > Other sources produce it at energies > 5 keV
 - Scalability
 - > Improving B-fields and ablation power
 - > Possible to stack
 - Electron cyclotron sympathetic cooling
 - Evaporative cooling
- > Production of H
 - Near threshold photodetachment
 - > Low recoil energy
 - Trappable Hydrogen production
 - Spectroscopy of magnetically trapped Hydrogen
- > Antimatter research
 - Spectroscopy in same Gravitational&Magnetic enviroment
 - > Reduce of systematic uncertainties
 - > Possibility of reaching precision in the comparision of 10^{-16} (Relative precision)

Thank you!

f Instituto de Física

Universidade Federal do Rio de Janeiro

Matrix Isolation Sublimation (MISu): (PRELIMINARY) proposal: H⁻ for ALPHA Hbar trap

Software

done

0

0,5-

0-

-0,5-

N

344

mean

0

Software

π

PITANGA_v5.vi							
reset osc	error	Principal Cooldown	Matrîz/Ablação	Pulso de Calor	Visualização	DAQmx & Parameters	Equipaments & Configuration
config osc	RUN		_	0.60-	0,5 1 1,	5 2 2,5 3	3,5 4 4,5 5
done 0	SHOW PARAMETERS	Visualiza Atual	Li - 670.7762 nm				
clear	HV INTERLOCK	heat pulse duration (ms) 5,000 heat pulse voltage (V)		0,30- 0,20- 0,10-	Ww		ah ha
0,5 -		fase (graus)	FP - Li Array	▽ 2,00-			
-0,5-		÷ 10	Function 1	0,50-	TWW	-www-w	
-1	mirror - Ablation	Time Of Flight	Channel 1 modulacao	0,02-			
ON	shutter - CLOSED	26,0 electron pulse delay (us)		0,00-			
N 746	Pulse Laser Continuosly	electron intensity	Teafira	-0.01-			
mean 65,4591 standard deviation	HISTOGRAM	acceleration potential (V)	1581118	4,00- 3,00- 2,00-		$\langle \rangle$	
0,0000 size(s) 0 time (ms)	STOP MATRIX	acceleration delay (ns)	extraction always ON	1,00- 0,00-		17	
0	event	200					

Channeltron - CEM

Funcionamento do Channeltron [6]

- More electrodes (possible to trap both positive and negatively charged particles)
 - Possible to stack from different pulses
 - Molecular production
- Two CEM for simultaneous detection
- More uniform magnetic field (yet still ~0.1 T)
- Optical access on axis for spectroscopy

π

Absorption

Molecules

$$---- |1_{z}\rangle -3.1 \text{ meV}$$
$$\Delta E_{01} = 12.7 \text{ meV} \approx 146 \text{ K} \ll 4 \text{ K}$$
$$---- |0_{z}\rangle -15.8 \text{ meV}$$

Neon can accommodate a 2D electron gas with a density over $10^{10} \mbox{cm}^{-2}$

 π

lons and neutrals time correspondence

 \mathcal{T}

Negative charge particles detection

lons and neutrals time correspondence

Número de Íons por tempo de delay após o pulso de calor

 π

